Streamlit for
Web Development

Build and Scale Secure Python-Powered
Apps with Streamlit

Second Edition

Mohammad Khorasani
Mohamed Abdou

Javier Hernandez Fernandez

APIECSS®

Streamlit for Web
Development

Mohammad Khorasani
Mohamed Abdou
Javier Hernandez Fernandez

Apress’

Streamlit for Web Development: Build and Scale Secure
Python-Powered Apps with Streamlit, Second Edition

Mohammad Khorasani Mohamed Abdou
Melbourne, VIC, Australia Cambridge, UK

Javier Hernandez Ferndndez
Madrid, Spain

ISBN-13 (pbk): 979-8-8688-1825-7 ISBN-13 (electronic): 979-8-8688-1826-4
https://doi.org/10.1007/979-8-8688-1826-4

Copyright © 2025 by Mohammad Khorasani, Mohamed Abdou,
Javier Hernandez Fernandez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Editorial Project Manager: Jacob Shmulewitz

Cover image by padrinan on pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New
York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1826-4

To my parents and my departed grandparents.
—Mohammad Khorasani
To my family, friends, and the open source community.
—Mohamed Abdou
To my family and friends for their support.

—Javier Herndndez Ferndandez

Table of Contents

About the Authors......cccccussemmmmsssssmmmmsssmmmmssssnmssss s ———————————— Xiii
About the Technical REVIEWETccuuseermmssssnnsmssssssssssssssnssssssssssssssssnns Xv
Acknowledgments.......cccuussssssnmssnnnmmsssssssssssssnsssesssssssssnssnssssssssssnnnnnns Xvii
() £ - Xix
ACIONYMS .ooviiriisssssssssssssmmsssssssssssssnsssessssssssssnnnnssssssssssssnsnnnsssssssssssnnnnns XXi
Intended AudiencCe.......cccvusummmmmssssnnnmmssssnnsssssssnsnssssssnnnessssnnnnssssnnnnnss Xxiii
Additional Material...........cccomnismmmmmmnssnnnmmnsssssmmmssssnmssssssnesassmmm. XXV
Chapter 1: Introducing Streamlit...........ccccvnnnnnsmesmnmnnnnmmssssssnmm——. 1
1.1, Why Streamlit?........ccovceiricrrsresere e 1
1.1.1. Local vS. the Cloud ..o 2
1.1.2. ATrend Toward Cloud COmMPULING.....c.cccevenerenernsesenesesese s sseseseanes 3
1.1.3. History of Web Frameworks in Pythonccccovvvnennnsennscsenssennenes 4

I T TSP 5

B T 0 T o o OSSR 6
1.1.68. DASH .t s 6
1,17, WED2PY.....ooveeeeeere et sr s ss s 7
1.1.8. The Need for a Pure Python Web Framework..........c.coccovveernscnencnenennes 7
1.1.9. Academic SignifiCanCec.cuvererenernsesnneserie s 8

1.2, FItiNG R UP o 8
1.2.1. Technical Recommendations............coueevnernnssinsesnesennese e 8
1.2.2. Environment Installation with Anaconda...........cccoevvvrninniesenesennnne, 10

https://doi.org/10.1007/979-8-8688-1826-4_1
https://doi.org/10.1007/979-8-8688-1826-4_1
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec13

TABLE OF CONTENTS

1.2.3. Downloading and Installing Streamlit...........cccccccvvriernrninieniennsenienn 15
1.2.4. Streamlit Console COMMANSocvvemsmseresssnssesesessssssesesessssseaes 16
1.2.5. RUNNING DEMO APPS ..ot s s e se e s s 19
1.2.6. Writing and Testing Code with PyCharm..........c.ccevvevvvniniernsenseniennns 20
1.3. How Streamlit WOrKS..........ccoceeeerernsenescrenssssseseseses s sessssesenes 25
1.3.1. The Streamlit ArChiteCtUre..........cccoeererriercrcrrrs s 27
1.3.2. ReactJS in Streamlit.........c.cooveveenrnnencscsres e 28
1.4 SUMMANY......oeeeeeeeree e sr e e 30
Chapter 2: Streamlit BaSiCS......uurrmmmmsmmmmmmmmmmsmssssssssssssnssssssssssssssssnnsnnas 31
2.1. Creating a Basic Applicationc.cccvinnnnininn s 31
2.1.1. Generating User INPut FOrMS.........ccoovevninenenennsesesesesesesessesessesenennes 32
2.1.2. Introducing Conditional FIOW..........c.ccevvrenenenernsesessenesesesessesessssensnns 35
2.1.3. Managing and Debugging Errors.........ccuverenernsesessesesesesensessssssessnns 37
2.2. Mutating Dataframescccccvnernenennsmsnessss s sens 4
2.2, FIREE ettt 42
2.2.2, SEIECT ...t ————— 43
2.2.3. AITANGE ...c.veeeeeerrerre e e s s s e e s r e se s e s re e e e e e 45
P T 111 - 1 SRS 47
2.2.5. GIOUP BY ...ttt ss s s 49
P T 11T o SRS 51
2.2.7. Data EdItor........ccovcevrrereresernesene s 53
2.3. Rendering Static and Interactive Chartsccccoevvvvrvnennsnsennenesescenennn, 53
2.3.1. Static Bar Chart ... 54
2.3.2. Static Line Chart ... s 56
2.3.3. Interactive Line Chartcocorinnnnnssnssssese s 57
2.3.4. Interactive Map........ccecvvereresnnsenere s sesese s s s sss s 60
2.4. Developing the User INterface..........cccvvrvennininse s ssessesseessesenns 62
P T T 1111111 T 1O 66

https://doi.org/10.1007/979-8-8688-1826-4_1#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec24
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec25
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_1#Sec27
https://doi.org/10.1007/979-8-8688-1826-4_2
https://doi.org/10.1007/979-8-8688-1826-4_2
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec15
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec17
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec18
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec19
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec21
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_2#Sec23

TABLE OF CONTENTS

Chapter 3: Developing the User Interface.........cccerrmsssnnnnmsssssnnssssssnnnnes 67
3.1. Designing the Application ... e 68
3.1.1. Configuring the Page........cccccrvvrniennnnernse s 68
3.1.2. Developing Themes and Color Schemescccocecrnvvnennescrnsennn 79
3.1.3. Organizing the Pagecccccvrvrnenncsnnse s 83
3.2. Displaying Dynamic CONtent.............cccveerrnenmrencrnserenese e 89
3.2.1. Creating a Real-Time Progress Barc..coovvninennnncenenessnsensennens 92
3.3. Implementing Multipage Applications...........ccccuevrinnninennsnsenese e 93
3.3.1. Creating Pagesccuvrererenernsmsessessssesessssesessesesssessssssesssssssssesessenenns 94
3.3.2. Grouping SUDPAGEScccvvrrerererrrrnserrre s 95
3.3.3. Enabling Sub URL Pathsccccveermrnnnnnenensnesssesesesese e sessesessesessnnes 97
Modularizing Application Development..........cccocvnirinnnninen s 98
3.3.4. Example: Developing a Social Network Applicationccceeevveniennens 99
3.3.5. Fragmenting Parts of the Application..........cccccvvvrniennesenesesnsenenns 105
3.3.6. Best Practices for Folder Structuringcccevvvrnsennnesesssessnsenenns 106
3.4, SUMMAIY.....ererrirerrerierereesessesesse e e sse s ssese s e ssessessesessessessesessesaesaessssensessens 108

Chapter 4: Managing and Visualizing Data........cccccusseennnsssnnnnsnsssnnens 109

4.1. Data Management.........cccveririnnenininsnn e s s 110
4.1.1. Processing Bytes Data...........ccccvvvvnnnininninn s seesenenns 110
4.1.2. Caching Big Dataccccvrvverrerrerierensenseneressssessessessssessessessessssessessenes 112
4.1.3. Mutating Data in Real TimMec.cccevvrinininn e 114
4.1.4. Advanced and Interactive Data Mutation..........c..ccoovvvnvinniiinnccnnn 117

4.2. Exploring Plotly Data Visualizationsccccevienninsninnsnsnsesiesnssenennens 124
4.2.1. Rendering Plotly in Streamlit..........cccconirninnninsnninne e 124
4.2.2. BaSIC ChartSccovrerieseserinssssese s se s 125
4.2.3. Statistical Chartscccovrrnensnrsrssse s 129
4.2.4. Time-SerieS Charts........cccvrrnencncnennssssssse s 130

vii

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec20
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec21
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec24
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec25
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec27
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec28
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec29
https://doi.org/10.1007/979-8-8688-1826-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1826-4_4
https://doi.org/10.1007/979-8-8688-1826-4_4
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec18
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec21

TABLE OF CONTENTS

4.2.5. Geospatial Chartsc..ceevvvrerrerierensensenesessssessesesssssssessessessssessessees 131
4.2.6. Animated Visualizations............cocvoenrnnnnnnennnn s 132
e T T 1111111 T 1O 133
Chapter 5: Integrating Datahases.......c.cccrussemmrssmsmsssnsmsssnsssssnnssssnnnnas 135
5.1. Relational Databasesccoveeerrrcrnenmrenere s 135
5.1.1. Introduction 10 SQL.........ccccererrerercrerrrse e 136
5.1.2. Connecting a PostgreSQL Database to Streamlitcccoceecrercnene. 138
5.1.3. Displaying Tables in Streamlitc.ccccoreerrienrerrnrerereeree e 144
5.2. Nonrelational Databases...........ccccvvvermrenerensnsesnesese s s 146
5.2.1. Introduction 10 MoNgoDB...........cccccorrnrnnenesssere e 146
5.2.2. Provisioning a Cloud Database............cccveererenernnernsesnnesessesesensenenns 147
5.2.3. FUll-TeXt INAEXING ...vccvrveererererseersenerrssesesesessssessssesessssessssessssesessesenns 151
5.2.4. Querying the Database.............ccovrvrernsrnnesesesese s 153
5.2.5. Displaying Tables in Streamlitc.ccccovverrreneresrnsesene s 158
5.3, SUMMAIY....cotiieircirce e e 161
Chapter 6: Leveraging Backend S€rversccuemmmmsssssnnmsssssssssssssnns 163
6.1. The Need for Backend SErVers ... sssesesesnns 163
6.2. Frontend-Backend Communication..........c.coouvenmnnnnnnnssesesessnsssesesennens 164
6.2.1. HTTP MEthOUScccoeererrssssrssnsssssiss e sssssnas 165
6.3. Working With JSON FileS........cccoeeeririerrerirnscrere s se s sens 166
6.4. Provisioning a Backend SErVerccocrrnnnrenerenesssesesesesesesesenenns 167
6.4.1. APl BUIIAINGcocveeeecccssssssss s sesesese s sssssssssssssssssssssnsnnas 168
R L o B =T 172
6.5. Multithreading and Multiprocessing Requestsc.cccvvvnvninennsniennens 174
6.6. Connecting Streamlit to @ Backend Server.........cccocvvvvninvnienesensensennens 176
6.7. SUMMAIY.....crierrereererseressesessesesessesesessessssessessessessesessessesssssssessesaessssensessens 178

viii

https://doi.org/10.1007/979-8-8688-1826-4_4#Sec22
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec23
https://doi.org/10.1007/979-8-8688-1826-4_4#Sec26
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_5#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_6
https://doi.org/10.1007/979-8-8688-1826-4_6
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_6#Sec10

TABLE OF CONTENTS

Chapter 7: Implementing Session Stateccccccmmnnsennnnnssssnsnnnssnnns 179
7.1. Implementing Session State Nativelyccoucvvinninirninnenennesennenens 179
7.1.1. Building an Application with Session State...........cccccvvvvriiccrnccnnnn 181

7.2. Introducing SESSION IDScoceueeereecrereere e 183
7.3. USEr INSIGNES ...coveeeeerccr s 185
7.3.1. Visualizing User INSIghts..........ccccvvrmrnnnnnenenssesese s 189

7.4. Cookie Managementc.coccoveemrnsmsrnessnssessse s s srssesenns 191
7.5, SUMMAIY.....criiiteriereresesesessese e ssesesse s ssese s e s e saessesessessessesessesaesasssssensessens 195
Chapter 8: Authenticating Users and Securing Applications............ 197
8.1. Developing USEr ACCOUNTSccccererinnenneeniensensee e sessessss s s ssesssessesaesns 197
200 0 T o =T 11T OSSR 198
8.1.2. SAIINGvovereierereee e 199

8.2. Verifying User Credentials............cuvvnenrinnnnnennesnsse e sesesens 201
8.3. Secrets Management...........cccoevivnininnnnn e 219
8.4. Anti-SQL Injection Measures with SQLAIChemy..........cccovernrererenerensenenns 220
8.5. Configuring Gitignore Variables...........cccocvrvvrinsnncsnnns e 220
8.6. SUMMAIY.....cocerieriririererr s s see s e s sre s e s e sae s e e e s saesae s e e naennens 222
Chapter 9: Deploying Locally and to the Cloud.............ccuseumssansssansans 223
9.1. Exposing Streamlit to the World Wide WEDccoccvverievnnenierienienensensennens 224
9.1.1. Port Forwarding over a Network Gateway.............coeereresnnsscsesesnnnans 224
9.1.2. HTTP Tunneling Using NGROK...........ccccvrerennrenserierssensensesessssessessenes 226

9.2. Deployment to Streamlit Community Cloud.........ccccocvvvvrininnicnninncrnsenenns 228
9.2.1. One-Click Deployment.........cccvvevievrrenrerrereses s sessesesessssesesse s 229
9.2.2. Streamlit SECIEtS........coccvevrerernercse s 231

9.3. Deployment t0 LINUXccoveeerenerercrenesesese e sessesenns 233
9.3.1. Native Deployment on a Linux Machinecccccovennienrencrnccnen 233
9.3.2. Deployment with Linux Docker Containers...........cccoevvniriennnensennenns 235

ix

https://doi.org/10.1007/979-8-8688-1826-4_7
https://doi.org/10.1007/979-8-8688-1826-4_7
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_7#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_8
https://doi.org/10.1007/979-8-8688-1826-4_8
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_8#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_9
https://doi.org/10.1007/979-8-8688-1826-4_9
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec9

TABLE OF CONTENTS

9.4. Deployment 10 WiNAOWS SEIVELccvevereriererensnsessessesssssssessessessssessessens 239
9.4.1. Establishing a Remote Desktop Connection...........ccecvvevrereverserseraens 240
9.4.2. 0pening TCP/IP POITS.......ccccvrerrerereenenseseressssesessesssssssessessessssessessees 242
9.4.3. Anaconda Offline Package Installationccccveevvverrerieriesensersenenns 246
9.4.4. Adding Anaconda to System Path...........cccocvvvvnininnnininnnnsensenens 247
9.4.5. Running Application As an Executable Batch File..........c.ccccvvvrierinnns 249
9.4.6. Running Application As a Persistent Windows Serviceceeruene. 250

0.5, SUMMAIY....cuieireercer ettt st s a s e e e e e 254

Chapter 10: Building Streamlit Componentsccccussensrssssnnssnssssnns 255

10.1. Introduction to Streamlit Custom Components........c..ccoevvrininncniennen 255

10.2. Using ReactJS to Create Streamlit Custom Components..........cccccvvenene. 256
10.2.1. Making a ReactJS COMPONentccovvevernnmrnsesensenesesesensesenseens 257
10.2.2. Using a ReactJS Component in Streamlit.........c.ccoooovvniniinniniennens 260
10.2.3. Sending Data to the Custom Component..........c..cceeevvrieriernsenienens 262
10.2.4. Receiving Data from the Custom Component...........c.cccrvvvviniennens 264

10.3. Publishing Components As Pip Packagesccoouermenmrnsersnsesessenensnnes 267

10.4. Component in Focus: Extra-Streamlit-Components...........ccceveevvreriernenn 272
10.4.1. STEPPEE BAX ...coueeeeeererer et ss e nnens 272
10.4.2. BOUNCING IMAQGE.......ccrrerereririerieressesesesseseesesse e saesessessessessssessessens 278
10.4.3. TAD BA& ... 282
10.4.4. COOKI€ MANAQGET........ccrrerrerrererserersessssesessessesessessessessssessessesssssssessens 287

10.5. SUMMAIY....ccviirirrrrerrererressssese e ssssese s ssssesessesasssssessesaesassessessessssensessenes 293

Chapter 11: Streamlit Use Casesscusssassssnssssnsssansssassssnsssansssanssns 295

11.1. Dashboards and Real-Time Applicationsc.ccccccvrerivrnsnscniennsensennenns 295
11.1.1. Temperature Data Recorder Application...........ccccooevvvrinienniniennens 296
11.1.2. Motor Command and Control Application............ccceeeerecrnccnenieens 301

11.2. Time-Series Applications ... 307

https://doi.org/10.1007/979-8-8688-1826-4_9#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec15
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_9#Sec17
https://doi.org/10.1007/979-8-8688-1826-4_10
https://doi.org/10.1007/979-8-8688-1826-4_10
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_10#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_11
https://doi.org/10.1007/979-8-8688-1826-4_11
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec4

TABLE OF CONTENTS

11.2.1. Date-Time Filter Applicationccccccvvrvnninininnn e 307
11.2.2. Time-Series Heatmap Applicationc.ccocvvvvrrevinnnsnienienessensenens 310
11.2.3. Time Synchronization Application..........ccceevververrerinnensenseriesessessenens 313
11.3. Data Management and Machine Learning Applications.........c..cccccvveruene. 317
11.3.1. Data Warehouse Application..........ccccvcrivnincnininsnsnseneses s 317
11.3.2. Advanced Application Development: Machine Learning
AS @ SBIVICE.....ovrveeeueereresresesesese e ssse e se e se e se e ssnens 328
B T 11T S 347
Chapter 12: Testing in Streamlit........ccccccirrnninnesssmmnnnennss s 349
12.1. PrinCiples of TEeSHiNG......cccvcvvcrrresersser e 349
12.1.1. What IS TESHING?......cceeeerrerererererese s se s 350
12.1.2. Benefits 0f TEeSHNGcccvivervreneresernse s 350
12.1.3. TYpes Of TESHINGceevveereerereere e 351
12.2. Why Test in Streamlit?..........ccccovvevniinininnessse e 352
12.2.1. Behavioral and Logical Testing...........ccoevvererrnnernsesnnenenssesnsesenseens 353
12.2.2. User Interface TeStNG........ccovrerererernsesrnsesesssesssesssesessesesessessssenens 353
12.3. Testing Streamlit Applications.........c.ccocevvvnvninnsnsnr s 354
12.3.1. Setting Up Testing Environmentcccocvvvnvniennnnnensenenessensennens 354
L T T [RS 356
12.4. Automated Testing with GitHub ACtionscccvevvvvvvrevrsncere e 360
12.4.1. Setting Up the WOrKFIOWccveerevnrnieriennsensere e sessessesessessensens 360
12.4.2. Creating the Test SCHPt.......ccccvvrievninire s e sessesnens 361
12.5. SUMMAIY....c.ciuiirice ettt e p s 363
Chapter 13: Streamlit for Al.........cccuccnmsmmssanmssnnssnsssassssansssnsssassssanssns 365
13.1. What Are LLMs and How Are They USeful?..........ccovonrrrenrnccnencnennne 365
13.1.1. SUMMANZALION ... 366
13.1.2. Content GENEeration............ccoveeeerererescrnsese s 369
13.1.3. Retrieval Augmented Generation.........c...coeoeerrecrrsesenesernseneneens 369

https://doi.org/10.1007/979-8-8688-1826-4_11#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_11#Sec16
https://doi.org/10.1007/979-8-8688-1826-4_12
https://doi.org/10.1007/979-8-8688-1826-4_12
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_12#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_13
https://doi.org/10.1007/979-8-8688-1826-4_13
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec4

TABLE OF CONTENTS

13.2. Different Ways to Interact with LLMS..........ccccovvvinininnnnninsensee e 370
13.2.1. Official Web Pages.......ccouvrnerrinninisnesess s sesessenens 370
13.2.2. Application Program Interfacesc.ccevvinsnieniennsnsessessssensennens 371
13.2.3. Self-Hosting and Deployment.............ccovernnnnnienniesnnnsesnsesenenens 372

13.3. Integrating LLMs with Streamlit..........cc.cccovvenrecnninnrrcc e 375
13.3.1. Building an Input User Interface.........c.cccovvvvnvririennsnicnesnsensennens 375
13.3.2. Setting Up an HTTP Connection..........ccovcevereverncenenenereserensesenseens 376
13.3.3. Creating the Stream Effectcccovvvrvenrinsnncnrecrccern e, 378
13.3.4. Building an LLM Application with Streamlit..............cccooevrnvennnncns 379

13,4, SUMMANY....c.eieeeeecrerere e e e nrens 387

Chapter 14: Streamlit at Workcccccemmmmrrnmssssssssssmnsnnssssssssssssssnnnns 389

14.1. Streamlit in Clean Energy: IDerarolacooueevoveernieseresesssesesssensens 389
14.1.1. Visualizing Operational Performance of Solar Farms..........c..c.cveeuun. 390
14.1.2. Wind and Solar Productionc..cccucvvniennnnnniennsnsnesessssessensens 391
14.1.3. HEAt MAPScverericcirerere s s snens 393
14.1.4. Closing ReMarks........cccuirirninininnsnese s sessssessessens 394

14.2. Streamlit in Industry: maxon Groupcuecevveevnvessiesesinsesessesessenes 395
14.2.1. Developing a Novel Surgical Scope Adapter System for Minimally

INVaSive Lapar0SCOPYccevreverrmserersesessesersssessssessssssessssessssesssssnsssanes 397

14.2.2. Streamlit Command and Control Dashboardc.ccocrvvvviriennns 399
14.2.3. CloSing ReMArKS.........cccvvverenenirenernsesssesesssessssesssesesesesesssssssenens 401

T4.3. SUMMAIY.....ciieruireererierese s st s s e sse s e e s e s sae e s e ssesaesassessesaesessessesseses 401
Bibliographycccccmmssssmnnmmsssssnnmsssssssnmsssssssnssssssnnssssssnnnnsssssnnnnnssssnnnnns 403
INA@X..euiiiisnnnnnssssnnnnmssssnnnnmssssnnnnnssssnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnsssnnnnnss 407

xii

https://doi.org/10.1007/979-8-8688-1826-4_13#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec10
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec11
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec12
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec13
https://doi.org/10.1007/979-8-8688-1826-4_13#Sec14
https://doi.org/10.1007/979-8-8688-1826-4_14
https://doi.org/10.1007/979-8-8688-1826-4_14
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec1
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec2
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec3
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec4
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec5
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec6
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec7
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec8
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec9
https://doi.org/10.1007/979-8-8688-1826-4_14#Sec10

About the Authors

Mohammad Khorasani is a hybrid of an
engineer and a computer scientist with a
bachelor of science in Mechanical Engineering
from Texas A&M University and a master’s
degree in Computer Science from the
University of Illinois at Urbana-Champaign.

Mohammad specializes in developing and

implementing software solutions for the

advancement of renewable energy systems and services at Iberdrola. In

addition, he develops robotic devices using embedded systems and rapid

prototyping technologies. He is also an avid blogger of STEM-related topics

on Towards Data Science—a Medium publication.
linkedin.com/in/mkhorasani/

Y 4 Mohamed Abdou is a software engineer with

/ diverse academic and industrial exposure,
/ a graduate of Computer Engineering from

Qatar University, and currently a Software
Development Engineer at Amazon. Mohamed
has built a variety of open source tools used by
h tens of thousands in the Streamlit community.
He led the first Google Developer Student Club
in Qatar and represented Qatar University in national and international

programming contests. He is a cyber security enthusiast and was ranked
second nationwide in bug bounty hunting in Qatar in 2020 among under
25-year-olds.

linkedin.com/in/mohamed-ashraf-abdou/

xiii

ABOUT THE AUTHORS

Javier Hernandez Ferndndez specializes in
the area of technology innovation and brings
over twenty years of practical experience

in overseeing the design and delivery of
R&D initiatives on behalf of multinational
companies in the field of IT, telecom, and

utilities. He currently manages research and
technical consulting projects as part of the
Innovation team of Iberdrola, working in the smart grid, renewables, and
energy efficiency domains. In addition to a B.Sc. in Computer Science
from the University of Ottawa (Canada), Javier holds two master’s degrees
in Energy Management from the University of Zaragoza and Project
Management from the University San Pablo CEU/IEP (Spain) and a
Ph.D. in Computer Science & Engineering from HBKU.
linkedin.com/in/javier-hernandezf/

Xiv

About the Technical Reviewer

Vladyslav Haina is an Al infrastructure

and MLOps engineer who specializes in
building scalable, production-grade artificial
intelligence systems. His primary focus is

on designing and automating end-to-end
machine learning workflows. Leveraging
deep expertise in DevOps, DataOps,

and Site Reliability Engineering (SRE),
Vladyslav skillfully integrates real-time data streaming using Kafka

and Flink, orchestrates complex pipelines with tools like Matillion and
ArgoCD, and implements robust monitoring solutions with Grafana

and OpenTelemetry. His key areas of proficiency include MLOps and

Al Platforming, Cloud-Native Architecture across GCP and AWS with
Kubernetes and Terraform, and establishing comprehensive Observability
for ML systems. Vladyslav is also an active contributor to the tech and
research community, with articles published in All Tech Magazine and The
American Journal of Engineering and Technology.

Acknowledgments

This undertaking would not have been possible without the support and

efforts of a selfless few. Individuals and entities who, in one way or another,

have made a contribution to the contents of this book are named as follows

in no particular order:

Streamlit: The visionaries who created the framework
itself, empowering countless developers

Iberdrola Renewables: The folks who served as a
test bed for our very first Streamlit ventures and had
to put up with our constant pitching of Streamlit’s
resourcefulness—Daniel Paredes, Nuria Sanchez
Sanchez, and Brenno Teixeira Martins

Iberdrola Innovation Middle East: Our beloved
coworkers who were Streamlitized, whether they liked
it or not—Ayman Al-Kababji, Mohd Alomar, Fawaz
Kserawi, Mohamed Elwaleed, and Mohamed Elbiba

Dr. Nikhil Navkar: For being another trailblazing
Streamlit user

In addition, a tangible part of our careers and personal endeavors

would have simply been inconceivable without the spirit of the open

source community. It is therefore in order to give a special tribute to

Python and its respective developers, in addition to the multitude of other

online forums that are silent heroes. Without their efforts, all-nighters

would be every other night, and our works not nearly as neat as they are.

xvii

Preface

It was a typical night when, just as I was about to fall asleep, my phone
buzzed. Being a millennial, I couldn’t resist checking it, only to find
another annoying email advertisement for something called “Streamlit.”
Normally, I'd ignore it, but for some reason, the sleek Streamlit logo
caught my eye. In hindsight, I'm glad I clicked on the ad. Since then,

my programming life has been closely linked to a framework I had been
hoping someone would create—the powerful Streamlit.

Early in my career, I noticed that many skilled Python developers,
including myself, excelled in backend and server-side programming
but struggled with frontend user interfaces and client-side software.
While Flask and Django made efforts to address this, both required
significant knowledge of HTML, CSS, and HTTP, making them tough to
use. I often turned to Tkinter and PyQt for local desktop applications,
but I couldn’t deploy anything to the cloud. What we needed was a pure
Python web framework with an intuitive API that allowed easy creation
and deployment of web applications, focusing primarily on the backend.
Essentially, something like React]S but for Python. And when I clicked that
ad, I found exactly what I was looking for. It was a eureka moment!

This happened in the summer of 2020, and Streamlit had only been
publicly released in the fall of 2019. In less than a year, the development
team had crafted a framework and API that matched my needs perfectly.
Since then, Streamlit has only grown in popularity, and for me, it came
at the perfect time. I had just joined Iberdrola and was tasked with
developing a Python-based web application. Before Streamlit, I would
have hesitated to even consider deploying applications to the web,

Xix

PREFACE

but now, I was advocating for web applications, proudly showcasing
Streamlit’s capabilities. In no time, I became a trailblazer within my
development team.

As with all great discoveries, it felt wrong to keep it to myself. I decided
to share Streamlit’s potential with the world, and this book is the result.
It’s written for developers who, like me, have struggled with creating and
deploying web applications. This book offers a comprehensive guide
to Streamlit, from simple use cases to building complex, cloud-based
applications.

By the end of this book, readers will not only understand how to use
Streamlit, but also how to integrate their web applications with powerful
server-side infrastructures like MongoDB, PostgreSQL, Linux, Windows
Server, and Streamlit’s deployment platform. The goal is to empower
readers to take their ideas and bring them to the web, possibly even
kickstarting their own ventures.

—Mohammad Khorasani

Acronyms

aaS
API
BLOB
CLI
CPU
CRUD
CSp
CSRF
CSS
DI
DG
DOM
DTW
GPU
HTML
IDE
ISP
JSON
JWT
LLM
MLaaS
MVC
NAT
ORM
0S
PID

As a Service

Application Programming Interface
Binary Large Object

Command-Line Interface

Central Processing Unit

Create, Read, Update, and Delete
Cloud Service Provider

Cross-Site Request Forgery

Cascading Style Sheets

Dependency Injection, a coding pattern
Delta Generator, a core module in Streamlit
Document Object Model

Dynamic Time Warping

Graphics Processing Unit

Hypertext Markup Language
Integrated Development Environment
Internet Service Provider

JavaScript Object Notation

JSON Web Token

Large Language Model

Machine Learning as a Service
Model-View-Controller

Network Address Translation
Object-Relational Mapping

Operating System

Process Identifier

ACRONYMS

PV Photovoltaic

RAG Retrieval Augmented Generation

RCE Remote Code Execution

RDP Remote Desktop Protocol

REST Representational State Transfer

SaaS Software as a Service

SCADA Supervisory Control and Data Acquisition
SQL Structured Query Language

SQLI SQL Injection

SSH Secure Shell

TPU Tensor Processing Unit

Ul User Interface

URI Uniform Resource Identifier
URL Uniform Resource Locator
UXx User Experience

VPN Virtual Private Network
WSL Windows Subsystem for Linux
XSS Cross-Site Scripting

xxii

Intended Audience

This book assumes that you have at least a basic understanding of the
following topics:

e Object-oriented programming
e Data structures and algorithms

e Python and the following bindings:

e Pandas
e Numpy
e Plotly

¢ SQL (both relational and nonrelational databases)
e Gitversion control frameworks
e Cloud computing

To fully benefit from the content in this book, it's important that
you have some experience in programming. If you're unfamiliar with
the areas mentioned, it's recommended to take an introductory course
before diving in. That said, you don’t need to be an expert to benefit from
the book. Even if you're already able to build applications with more
advanced frameworks, you may still appreciate how much time and
effort Streamlit saves. It enables you to create a robust web application in
hours, something that might have taken weeks with frameworks like Flask
or Django.

xxiii

INTENDED AUDIENCE

However, if you're looking for highly customized and intricate frontend
user interfaces, Streamlit might not be the right choice at this moment.
While it is continuously improving, there may be more flexibility in
frameworks like Django for now. But, as mentioned, Django requires more
advanced programming skills to develop web applications.

By the end of this book, you should be capable of building and
deploying scalable web applications to the cloud, with the ability to handle
both backend and frontend requirements. You'll be able to integrate your
applications with databases like PostgreSQL and MongoDB and deploy
them using cloud services such as Microsoft Server, Linux containers, and
Streamlit’s own cloud platform.

While this book will go into significant detail on the required concepts,
some level of self-learning and research will be necessary. There may be
gaps in the tutorials, or some tools might become outdated as you read.
You'll need to apply your own intuition and judgment to fill in those gaps.
This book will also focus on the practical application of Streamlit and other
tools rather than explaining the inner workings of their source code. Each
tutorial will present a specific use case or application, with accompanying
code. All the code provided in this book is open source, released under the
MIT License. You are encouraged to adapt and apply the methodologies
shared here to meet your own technical needs.

XXiv

Additional Material

This book is supported by a wealth of online resources, including
repositories, datasets, libraries, APIs, and their corresponding
documentation. Where applicable, URLs to these materials will be
provided throughout the book. All tutorials and source code featured in
this book can be accessed through the following repository: https://
github.com/Apress/Streamlit-for-Web-Development. Additionally,
any references to the Streamlit API can be found on their official
documentation site at https://docs.streamlit.io/library/api-
reference.

https://github.com/Apress/Streamlit-for-Web-Development
https://github.com/Apress/Streamlit-for-Web-Development
https://docs.streamlit.io/library/api-reference
https://docs.streamlit.io/library/api-reference

CHAPTER 1

Introducing Streamlit

With the overwhelming influx of data and the speed at which it is
generated, traditional computing methods are increasingly unable

to deliver results efficiently. In contrast, cloud computing serves as a
powerful enabler, helping to overcome these limitations. Offering greater
scalability, lower costs, and improved flexibility, cloud migration benefits
service providers, developers, and users alike.

As Python remains the scripting language of choice for much of the
software development community, it becomes crucial to offer a web
framework that bridges the skills gap for developers. While traditional
frameworks like Flask and Django require a solid understanding of HTML
and CSS, Streamlit stands out as the first major framework to rely entirely
on Python, drastically reducing development time from weeks to hours.

1.1. Why Streamlit?

Restricting oneself to local computing is now a relic of the past, as the
cloud unlocks a wide array of advantages, empowering developers to make
a significantly greater impact on the world. This is precisely why a new
generation of developers is wholeheartedly embracing the cloud, and the
swift shift toward this computing paradigm underscores its transformative
potential. In this context, a pure Python web framework like Streamlit
becomes invaluable, offering developers an accessible bridge to make the
transition while serving as a powerful enabler for those seeking to harness
the full potential of cloud computing.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Fernandez 2025 1
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_1

https://doi.org/10.1007/979-8-8688-1826-4_1#DOI

CHAPTER 1 INTRODUCING STREAMLIT

1.1.1. Local vs. the Cloud

The cloud is increasingly becoming synonymous with data. Wherever
there is an abundance of data, cloud computing is often intricately linked.
Simply put, harnessing the value of big data without leveraging the cloud is
nearly impossible. Gone are the days of relying on Microsoft Excel to create
outdated dashboards for datasets. With the sheer scale of data available
today, local computing alone is no longer sufficient.

That said, local computing does have its merits. Prototyping an idea
is often faster, and latency between nodes and servers is significantly
lower. This is why edge computing maintains a key advantage in specific
scenarios. For applications where security is critical or regulations are
restrictive, local computing may be the better option. However, beyond
these cases, the drawbacks of local computing outweigh its benefits. High
overhead costs for maintaining infrastructure and limited adaptability to
traffic spikes, such as the surge during the Super Bowl halftime, make local
computing impractical for many modern applications.

In contrast, cloud computing offers cost-effective provisioning,
exceptional scalability, high reliability, and resilience against failure.

It allows scaling in two ways: horizontally, with multiple instances of

the same resources, and vertically, with bespoke resources like GPUs,
TPUs, and advanced database systems. Most notably, the cloud expands
possibilities, enabling products to be offered as services on the web. This
shift toward the as-a-service (aaS) model—spanning software (SaaS),
machine learning (MLaaS), and beyond—has redefined how value is
delivered online.

This is where a framework like Streamlit becomes invaluable. It serves
as a cloud enabler, addressing the skills gap that has kept many developers
from deploying their work online. Streamlit empowers developers at all
levels, making it easier to bring value to the web and participate in the
cloud-driven future of software development.

CHAPTER 1 INTRODUCING STREAMLIT

1.1.2. A Trend Toward Cloud Computing

Cloud computing has become the compass of modern technology,
guiding academia, corporations, governments, and even intelligence
agencies as they rapidly transition from local systems to the cloud. With
legacy software struggling to provide growth and returns on investment,
organizations are increasingly turning to cloud service providers (CSPs) for
agility, cost efficiency, and access to advanced computing resources. Even
CSPs are reimagining their offerings, with Google and Microsoft migrating
their legacy applications to the cloud through platforms like Google G
Suite and Microsoft Office 365.

From a business perspective, the rationale for embracing the cloud is
stronger than ever. Disruptive businesses have fully adopted what many
had previously hesitated to accept, making cloud adoption less a choice
and more a necessity for survival. Reduced lead times, scalability, lower
capital expenditures, and heightened innovation are just a few benefits
driving this shift. For CSPs, the advantages are equally compelling:
resource pooling, enhanced elasticity, and decreased maintenance costs
create a compelling value proposition. Most notably, for consumers, the
cloud has become a transformative force, akin to the Internet itself. SaaS
models deliver unmatched flexibility, granular pricing, and exceptional
value, creating a win-win-win scenario where everyone benefits.

The trajectory toward cloud computing was already strong, but the
global pandemic acted as an accelerant, breaking down long-standing
barriers to remote learning, online exams, remote work, and more.
Decades of effort by the tech community could not achieve what this
singular event accomplished in normalizing cloud-based solutions.
Moving forward, the growth of cloud adoption is likely to surpass even
the most optimistic forecasts. If trends and data serve as indicators, the
direction is clear, as illustrated in Figure 1-1.

CHAPTER 1 INTRODUCING STREAMLIT

Total size of the public cloud computing market from 2008 to 2020
160 - 159,28

71
141.43
140 -
128.88
Lol 113.94
96.98
- 78.42
., 58.61
i 40.95
25.50
20~ 15.08
55y (868 .
- W W .
& NG N No
N o) S 8 S

% o o ~ » o A 2 o o
oF) ~ & & o N o
P T P » " s B P A

=
[} (=1
(=} (=1

'

Value (Billion USD)
£=1]
o

¥

Figure 1-1. Growth of the public cloud computing market from 2008
10 2020. [13]

1.1.3. History of Web Frameworks in Python

Web development often requires a multidisciplinary team with expertise
in frontend, backend, and server-side development. This demand has
led to the rise of full-stack developers, who possess knowledge across the
entire development process and are highly sought after, often enjoying
competitive compensation.

Historically, web applications were developed using languages like
JavaScript, PHP, or Perl, while Python was relegated to local scripting
tasks. This was primarily because Python was not natively designed for
web development and required a framework to interact with web servers
and browsers. Over time, however, the Python community has introduced
several frameworks that enable effective web development. Thanks
to Python’s focus on simplicity, readability, its rich library ecosystem,

CHAPTER 1 INTRODUCING STREAMLIT

and open source nature, it has evolved into a popular choice for web
development. Major platforms like Google and Instagram have also
adopted Python, further cementing its reputation.

Web frameworks generally fall into two categories: full-stack and
microframeworks (non-full-stack). Both manage essential aspects of web
development, such as communication and infrastructure, but differ in
scope. Full-stack frameworks provide comprehensive, built-in solutions
for handling tasks like interpreting requests, managing data storage, and
rendering user interfaces, making them suitable for complex applications.
In contrast, microframeworks offer only basic functionalities, such as
routing HTTP requests, dispatching controllers, and returning responses.
Developers typically integrate them with additional APIs and tools to build
applications. Examples of popular frameworks from both categories are
outlined in the following sections.

1.1.4. Flask

Flask, developed in 2010 by Armin Ronacher, originally started as what was
reportedly an April Fool's joke. It is a microframework, or non-full-

stack framework, that provides an application server but offers minimal
additional components. Flask's core is built around two key tools:
Werkzeug, which supports HTTP routing, and Jinja, a template engine for
rendering basic HTML pages. Additionally, it incorporates MarkupSafe for
string handling and ItsDangerous for secure data serialization, enabling
session data to be stored as cookies.

Flask is a minimalist framework equipped with only the essentials
needed to create a web application. This design gives developers
significant flexibility and control but also places greater responsibility on
them to build and manage the application’s infrastructure. As such, Flask
is best suited for static websites or for experienced developers who are
comfortable designing their own infrastructure and interfaces.

CHAPTER 1 INTRODUCING STREAMLIT

1.1.5. Django

Django was developed by a group of web programmers in 2003, using
Python to build web applications. It allows developers to create more
complex applications with less overhead compared to Flask. Specifically,
Django makes it easier to render dynamic content with greater scalability
and provides built-in capabilities for interacting with databases through
object-relational mapping (ORM).

In addition, Django includes a wide range of modules for various
functionalities, such as ecommerce, authentication, and caching. These
pre-built packages enable developers to quickly add extended services to
their applications. With the inclusion of numerous third-party packages,
Django allows developers to focus on the core idea of their project, without
needing to handle every detail of the implementation.

1.1.6. Dash

Dash is a web framework developed by Plotly for building enterprise-grade
web applications in Python, R, and even Julia. While Plotly is primarily
known for its data analytics and visualization tools, Dash is typically used
to create interactive dashboards. However, with its extensive customization
options, Dash can also be used for general-purpose applications.

Dash natively supports D3.js charts and provides default HTML and
CSS templates for developers to use. For more customized interfaces,
though, developers need to have proficiency in frontend programming.
Additionally, Dash offers an enterprise package that allows experienced
developers to deploy their applications on the cloud with production-
grade features such as authentication and database integrations.

CHAPTER 1 INTRODUCING STREAMLIT

1.1.7. Web2Py

Web2Py is a full-stack web framework for Python that follows the Model-
View-Controller (MVC) architectural pattern, similar to Django. It

allows developers to create dynamic content with ease and offers native
integration with database systems. One of the unique features of Web2Py is
its built-in, web-based integrated development environment (IDE), which
includes a ticketing system for error tracking and management, simplifying
development and debugging.

However, a key drawback of Web2Py is that it executes objects and
controllers in a single global environment, which is reinitialized with each
HTTP request. While this setup can be beneficial in some cases, it can
also lead to performance issues and incompatibility with certain modules,
especially as the application scales.

1.1.8. The Need for a Pure Python Web
Framework

Previously, Python developers had to make do with deploying their
software locally as desktop applications unless they had proficient
knowledge of HTML, CSS, and JavaScript. With Tkinter and PyQt,
programmers could create complex, dynamic, and visually appealing
interfaces, but the drawback was that they couldn’t render these
applications on the web. This challenge was faced by many Python
enthusiasts, who until recently, had no straightforward way of migrating
their work to the cloud using only Python.

It was always frustrating to go through repository after repository of
amazing applications, developed by talented people, only to realize that
the only way to share their work was by providing the source code and
hoping others could replicate it locally. And let us not even consider non-
technical users who could not execute the code at all. Many of these efforts

CHAPTER 1 INTRODUCING STREAMLIT

went largely unused. In short, there was a clear need for a framework that
did not require advanced knowledge of web technologies—something
that would allow developers to write their typical Python scripts and
deploy them directly to the cloud. Then came Streamlit, which liberated
developers from the need for HTML, CSS, and JavaScript. The rest, as they
say, is history.

1.1.9. Academic Significance

Being able to create web apps directly from Python easily has made
Streamlit a valuable tool for academia [1]. Despite its relatively recent
creation, with the first beta release in April 2019, research teams around
the world have started adopting the framework to showcase the outcomes
of their projects. Today, many publications already mention Streamlit

as their visualization framework, covering a wide range of fields. Some

of these areas include health [2, 3, 4, 5], computer science [6, 7, 8, 9],
economics [10, 11], and civil engineering [12], to name a few.

1.2. Firing It Up

Being the highly versatile and accommodating framework that it is,
Streamlit allows developers to utilize it with a variety of computing
resources and technical stacks. Even so, there are some recommended best
practices to follow for greater ease and usability.

1.2.1. Technical Recommendations

While there is no one-size-fits-all solution when it comes to running
Streamlit, the following computing and system requirements, or greater,
are recommended for developing and running applications smoothly.
Please refer to Tables 1-1, 1-2, 1-3, and 1-4 for a list of recommended
specifications.

CHAPTER 1 INTRODUCING STREAMLIT

Table 1-1. Hardware recommendations

CPU RAM Storage Internet/Network access

4 x 64-bit 2.8 GHz 8 GB 1600 MHz DDR3 100 GB 10 Mbps

Table 1-2. System recommendations

Operating System Database

Ubuntu 16.04 or higher PostgreSQL 17 or higher

Windows 7 to 11/Windows Server 2019

Mac 0S X 10.12 or higher pgAdmin 4 v8.14 or higher
Linux: RHEL 6/7

Table 1-3. Software recommendations

Streamlit Anaconda

1.41.1 or higher ~ With Python 3.9 or higher

Table 1-4. Network recommendations

Inbound Ports Outbound Ports

HTTP: TCP 8080, 8443 HTTPS: TCP 443
SSH: TCP 22 SMTP: TCP 25
LDAP(s): TCP 389/636

CHAPTER 1 INTRODUCING STREAMLIT

1.2.2. Environment Installation with Anaconda

To create a web application running on a local Streamlit server for
prototyping and testing, we first need to set up a Python runtime
environment with all the necessary dependencies. For this, we will

use Anaconda, one of the most widely used and supported Python
distributions. Begin by downloading and installing a compatible version of
Anaconda. After the installation is complete, create a virtual environment
to install the packages required for running your web application.

Programmatic Installation

To create an Anaconda environment through the console, please follow
these steps:

1. To create and install your environment
programmatically, enter the following commands in
Anaconda Prompt sequentially:

conda create -n <environment name>
python=<version number>

When conda asks you to proceed, select y.

proceed ([y]/n)?

Next, the new environment will be created in the
environments folder within the root directory of
Anaconda as C:/ProgramData/Anaconda3/envs/.

2. Activate your environment by typing the following:

conda activate <environment name>

10

10.

CHAPTER 1 INTRODUCING STREAMLIT

If you have a list of dependencies, dependencies.
yml, place it in your newly created environment’s
directory:

C:/ProgramData/Anaconda3/envs/environment name/

Change your root directory to your environment'’s
directory by typing the following:

cd C:/ProgramData/Anaconda3/envs/<environment name>/

Ensure that the first line in the dependencies.yml is
written correctly as the name of your environment,
name: environment name; otherwise, the
environment may not be installed.

Update your environment by installing all the
dependencies listed in the file dependencies.yml by
typing the following:

conda env update -f dependencies.yml

If prompted by Anaconda, proceed with updating
your version of conda by typing the following:

conda update -n base -c defaults conda
To check the list of environments, type the following:
conda info -envs

To check the list of dependencies in your
environment, type the following:

conda list

To install additional dependencies that may be
required later, please type the following:

conda install <dependency name>

11

CHAPTER 1 INTRODUCING STREAMLIT

11. Some dependencies may not be available for
download via conda install; in this case, download
pip and then use pip install as shown in the
following:

conda install pip
pip install <dependency name>

12. To deactivate your environment, you may type the
following:

conda deactivate

Graphical Installation

Alternatively, you may use Anaconda Navigator to create and maintain
your environments as follows:

1. Launch Anaconda Navigator.

2. Click the Environments tab. Please see Figure 1-2.

{0 ANACONDA NAVIGATOR © vriie

& Home

Q itarfber Channels Update index..,
-
- I " o MName ~ 1 Description
o sy Simplifies package management

*Learwing B _anaconda_depe = and deployment of anaconda

§ [I) Absesl comman libraries {ces)
ah, Community

<

Yy & ¢ B ® 5 L &

npoit Backup Remowe

Figure 1-2. Opening the Environments tab in Anaconda

12

CHAPTER 1 INTRODUCING STREAMLIT

3. Click the Create button and enter the desired
name and Python version for your environment.
Please see Figure 1-3.

{_) ANACONDA NAVIGATOR 0 vos

A Home

Sl =ts Update index...

Destription Vet

] 2 I N test emvironment

ocation;
ﬁ Learning
LN

- LOmmunity R 16,1

Cancel Create

backend libcove

vy & ¥ = 5

wort Back

X §

T 73 packages avadlatibe

Figure 1-3. Creating an environment in Anaconda

4. Next, follow steps 2-12 in the previous section
to install the dependencies. Next, as shown in
Figure 1-4, the test_environment environment will
appear activated with all the required packages
installed.

13

CHAPTER 1 INTRODUCING STREAMLIT

Araconda Nagancs
File Helg

) ANACONDA NAVIGATOR -

-

Al applications ~ on Lest_enviranment « | Channels

‘ Environments

* Learning @

o Community

PyCharm Professional Anaconda Al Navigator

Figure 1-4. Newly created environment in Anaconda

5. Finally, you will be able to launch any of the
available IDEs in Anaconda in your newly created
environment in the Home tab. Please see Figure 1-5.

File Help
") ANACONDA NAVIGATOR 0 oo
M Home
Q nstalled Channels Update index...
8 base (root) Name ~ T Desa
Learning B beip? J | I
& | o
e, Community B cacertificates
<
8 exp
[e SR & i
[Cr e, &
Yy & 2 - 5 £ & B openssl
Create Clone Import Backup Femove 18 packages available

Figure 1-5. Selection of IDE’s in Anaconda

14

CHAPTER 1 INTRODUCING STREAMLIT

1.2.3. Downloading and Installing Streamlit

There are multiple ways to download and install the Streamlit library,

and in this section, we will cover one of the most commonly used ways of

installation.

Direct pip Installation

To download and install Streamlit, first ensure that
you are in the correct environment by entering the
following command in Anaconda Prompt:

conda activate <environment name>

Next, you may download and install Streamlit by
entering the following command:

pip install streamlit

Manual Wheel File Installation

1.

Ensure that you are in the correct environment
by entering the following command in
Anaconda Prompt:

conda activate <environment name>

Manually download the wheel installation file from
https://pypi.org/project/streamlit/

Change the directory to where the wheel file is
located:

cd C:/Users/.../

15

https://pypi.org/project/streamlit/

CHAPTER 1 INTRODUCING STREAMLIT

4. Then install the downloaded wheel file by entering
the following command:

pip install streamlit-1.41.1-py2.py3-none-any.whl

If the installation is successful, you may proceed with creating your
script. For good measure, restart Anaconda before you do so.

Importing Streamlit

To import Streamlit into your Python script, ensure that the following line
precedes the rest of your code:

import streamlit as st

Later, any Streamlit method can be invoked by appending st to it as
follows:

st.write('Hello world")

1.2.4. Streamlit Console Commands

When Streamlit is installed, the Streamlit command-line (CLI) tool is also
installed. The command line can help you run, operate, and diagnose
issues related to your Streamlit application.

To get additional help, enter the following command:

streamlit --help

To run your application, ensure that you have changed the directory to
where your script is located:

cd C:/Users/.../script directory/
Then enter the following to run your script:

streamlit run <script.py> [--script args]

16

CHAPTER 1 INTRODUCING STREAMLIT

Then, your application’s local URL and network URL will be displayed.
Simultaneously, your application will automatically appear on your default
web browser. You may use the local URL to connect to your application
locally and the network URL to connect on any other device over the local
area network. In addition, you will be able to see the console for your
Streamlit application as shown in Figure 1-6.

B Anaconds Prompt - streamiit run seriptpy O

Figure 1-6. Console while running the Streamlit application

To clear the cache, enter the following command:
streamlit cache clear

To open Streamlit’s documentation on a web browser, enter the
following command:

streamlit docs
To display Streamlit’s version, enter the following command:

streamlit --version

17

CHAPTER 1 INTRODUCING STREAMLIT

Configuring Streamlit Through the Console

You may pass config options to streamdlit run to configure options such as
the port the application is being run on, disable run-on-save, and others.

For an exhaustive list of configuration options, enter the following
command:

streamlit run --help

You can view the list of configured options by entering the following
command:

streamlit config show

You may configure these options using one of the four following
methods:

1. Using a global config file at .streamlit/config.toml:
[server]
port = 80

2. Using a config file for each project in your project’s

directory:

C:/Users/.../.streamlit/config.toml

3. Using STREAMLIT * environment variables as shown
in the following:

export STREAMLIT SERVER PORT=80

4. Using flags in the command line when running your
script as shown in the following:

streamlit run <script.py> --server.port 80

18

CHAPTER 1 INTRODUCING STREAMLIT

1.2.5. Running Demo Apps
To run Streamlit’s demo applications, enter the following command:
streamlit hello

Then, the following application will be displayed on your default web
browser. You may use the menu on the sidebar to visit the four following
demo applications, as shown in Figures 1-7, 1-8, 1-9, 1-10, and 1-11.

Welcome to Streamlit! §)

Want to learn more?

See more complex demos

Figure 1-7. Streamlit demo application home page

19

CHAPTER 1 INTRODUCING STREAMLIT

Animation demo

@ Animation dema

% L2
L2
b]
b s
L 2™ L

Figure 1-8. Streamlit animation demo application

1.2.6. Writing and Testing Code with PyCharm

Generally speaking, code expands over time, either by adding new
modules to the original code base or by integrating it with third-party
services. To ensure the code performs flawlessly, testing can be employed.
Code testing is typically divided into two methods: unit testing and
integration testing. Unit testing is used to test individual modules, while
integration testing ensures the entire system works as expected. For

this example, we will focus on unit testing, but the same concept can be
applied to integration testing. In both cases, we need to provide inputs
and compare expected outputs with actual ones. For a simple Streamlit
application that allows the user to calculate the sum of two numbers,

we can test two main aspects: first, if the web application renders as
expected, and second, if the summation logic is correct. These represent
two separate unit tests, but the first one is common when developing any
frontend application. Listing 1-1 shows the sample application we will test,
with the output shown in Figure 1-12 when run with Streamlit. Listing 1-2
tests both the rendering and summation logic of the example.

20

CHAPTER 1 INTRODUCING STREAMLIT

T Senp
Helio
i Dataframe demo P lotting demo
= Plotting dema
© Mapping demo This demao illustrates a combination of plotting and animation with Streamiit. We're generating a bunch of
random numbers in 2 beop for around 5 seconds. Enjoy!
@ Animation demo
—
41% complete
Figure 1-9. Streamlit plotting demo application
DataFrame demo M a ppi ng de mo
Plaotting demo
© s Thin demo shaves haw 1o Use o pyiedi ot to display geoapatial data

¢ Animation demo

Map layers

B Gike rentals

& Ban swop exits
& Bart stop names
Outhaund Row

& show code

£ Bantia £ e St e i man

Figure 1-10. Streamlit mapping demo application

21

CHAPTER 1 INTRODUCING STREAMLIT

W@ DataFrame demo

DataFrame demo

[coina » J Usitect Staesot . =

Gross agricultural production ($B)

Figure 1-11. Streamlit dataframe demo application

Listing 1-1. main.py
import streamlit as st

def calculate sum(ni, n2):
return n1 + n2

st.title('Add Numbers"')

n1 = st.number input('First Number', value=0)
n2 = st.number_input('Second Number', value=0)

if st.button('Calculate'):
summation = calculate sum(ni, n2)
st.write(f'Summation is: {summation}')

22

CHAPTER 1 INTRODUCING STREAMLIT
Listing 1-2. unit_test.py

from main import calculate sum

from selenium import webdriver

from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_
conditions as EC

from selenium.webdriver.chrome.service import Service

def test user interface():
Path to chromedriver. Ensure this is correct for your
environment
driver path = r'---------- \chromedriver.exe'

Set up options

options = Options()

options.add argument('--headless') # To not open a real
chrome window

Use Service to specify the driver path
service = Service(driver path)

Initialize the driver with options and driver path from
WebDriverManager
with webdriver.Chrome(service=service, options=options)
as driver:

url = 'http://127.0.0.1:8501"

driver.get(url)

Wait for page elements to load
try:
WebDriverWait(driver, 10).until(

23

CHAPTER 1 INTRODUCING STREAMLIT

EC.presence_of element located((By.TAG_
NAME, 'h1'))
)
html = driver.page source
except Exception as e:
print(f'Error while waiting for page: {e}")
html = driver.page source

Perform assertions to check page content
assert 'Add numbers' in html

assert 'First Number' in html

assert 'Second Number' in html

def test logic():
assert calculate sum(1, 1) == 2
assert calculate sum(1, -1) == 0
assert calculate sum(1, 9) == 10

if _name_ == "' main_ ':
test logic()
test user interface()

Add Numbers

First Number

0

Second Number

0

Calculate

Figure 1-12. Output of Listing 1-1

24

CHAPTER 1 INTRODUCING STREAMLIT

To test rendering, we first need the application to be running so it
can be accessed by Selenium’s driver, which is Chrome in this example.
To automate the process of launching the application before running
the tests, we may need an advanced IDE. PyCharm can handle this
task for us. First, we need to set up a running configuration to launch
Streamlit with a button click, as shown in Figure 1-13. Once we have this
configuration for running Streamlit, we can use it as a prerun command
in another configuration, which will be used to run the unit tests shown in
Figure 1-14.

While browser automation tools like Selenium are powerful for
end-to-end testing, it's important to note that Streamlit now offers its own
built-in testing framework, AppTest. Designed specifically for Streamlit
applications, AppTest allows for faster and more integrated testing without
the need to manage a browser. This framework simplifies the testing
process and ensures that developers can efficiently verify the functionality
of their Streamlit applications. By leveraging AppTest, developers can focus
on writing and deploying their applications, knowing that their tests are
seamlessly integrated into the Streamlit environment.

1.3. How Streamlit Works

Unlike other web frameworks, which send static files to the browser,
Streamlit modifies the real DOM and its state to render the final web
document server-side. Under normal user behavior, there should be no
security concerns. However, similar to PHP, Streamlit can be susceptible
to Remote Code Execution (RCE) if poorly coded, where user input is
not sanitized and can be exploited to execute OS-level code. A real-world
example of this vulnerability was recently found in the community
component, streamlit-geospatial [Ref: (https://securitylab.github.
com/advisories/GHSL-2024-100 GHSL-2024-108 streamlit-
geospatial/)].

25

https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/
https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/
https://securitylab.github.com/advisories/GHSL-2024-100_GHSL-2024-108_streamlit-geospatial/

CHAPTER 1 INTRODUCING STREAMLIT

Running a Streamlit web application starts by executing the binary—
streamlit.exe on Windows or streamlit.sh on macOS or Linux—using the
default Python interpreter. This initializes the application configuration,
including secrets, settings, themes, and, most importantly, the Delta
Generator (DG), which acts as the intermediary between the Python script
and the React]S web application served by Streamlit.

B Run/Debug Configurations X
9 g
+ - B x
Python Name: Streamiit] Allow paraliel run] Store as project file
Unit test
Shell Script Execute:) Seript file (®) Seript text
Script text: streanlit run main.py
Working directory: CifUsers/ part_Vchapler_1

Environment variables:

B Execute in the terminal

* Before launch

+

[Show this page [Activate toal window

o o | aopy

Figure 1-13. Making a shell command to run once the current
configuration is chosen and ran

26

CHAPTER 1 INTRODUCING STREAMLIT

1.3.1. The Streamlit Architecture

The DG is responsible for efficiently transferring HTML components to
be rendered on the client side and retrieving their state. The initial render
begins at the start of the Python document and continues to the last line.
Subsequent renders do not start from the beginning of the file; they begin
at the component that was interacted with by the user or had its state
changed. This will be covered in more detail in later chapters. Each new
render of a component is queued in the DG, where it will either replace
an existing HTML snippet or be inserted between other rendered HTML
components in the final DOM.

Streamlit components are queued and rendered individually to avoid
negatively impacting the user’s experience with a blank page if rendering
takes too long. Such delays can result from extensive computations,
waiting for API responses, or even sleep functions, as demonstrated in
Listing 1-3, and shown in Figures 1-15 and 1-16.

Listing 1-3. text_display.py

import streamlit as st
import time

User sees this first
st.title('My Title')
time.sleep(2)

User sees this second after 2 seconds
st.write('My *markdown* text in **Streamlit**')

27

CHAPTER 1 INTRODUCING STREAMLIT

Run/Debug Configurations

+ — @B N
Python Name: | Unit test [C] Allow paraliel ryn (] Store as project file
Unit test Cenfiguration Logs
Shell Script J————
Streamit Senpt pathe v | Ch\Users) \part_lchapter_V\unit_te:
Parameters:
* Environment
Environment variables PYTHONUNBUFFERED=1
Python interpreten # Python 3.8
Interpreter options:
Worlang directory: C\Users’ \part_T\chapter_1
[<] Add content rocts to PYTHONPATH
7] Add source reots to PYTHONPATH
¥ Execution
[] Emulste terminal in output console
(] Run with Python Consale
[] Redirect input from:
w Before launch
o+
Run "Shell Script ‘Streamlit
Edit configuration templates [C] Show this page £ Activate tool window
© Concel | topy

Figure 1-14. Choosing a Python interpreter to run the unit test file
but after running the configuration in Figure 1-13

The end user will notice the page updates to include the st.write
message within two seconds to what seems like a fully loaded page.

1.3.2. ReactJS in Streamlit

For simplicity, we have been referring to Streamlit as inserting HTML
into the client’s browser. In reality, it uses React]S’s virtual DOM to
insert elements and manage their state. This can be confirmed by using
Chrome’s React Developer Tools extension, as shown in Figure 1-17.

28

CHAPTER 1 INTRODUCING STREAMLIT

Given this, and understanding Streamlit’s source code, we can
conclude that Streamlit uses built-in React]S components, grouped
together to create a fully functional JavaScript web application with
Python! Additionally, we can leverage Streamlit’s generic handling of
components to build custom and complex ones that are not provided out
of the box, which we will explore in later chapters.

Streamlit's Delta

Fithon Code Generator Web Client
] st title » ;
Insert titte HTML—»
- OK-=--==v==-
€ - -~ Error or None------ :
-”””S'I'é'ép 2
seconds

st.write———»

€ ----- Error or None------

Figure 1-15. End-to-end execution sequence for Listing 1-3

My Title

My markdown text in Streamlit

Figure 1-16. Streamlit output for Listing 1-3

29

CHAPTER1 INTRODUCING STREAMLIT
Mv Title

My markdown text in Streamlit

Figure 1-17. Streamlit output for Listing 1-3

1.4. Summary

This chapter highlighted the trend toward cloud computing and the
benefits it offers to developers, users, and cloud service providers. We
also discussed the four most commonly used Python web frameworks,
including one microframework—Flask—and three full-stack frameworks:
Django, Dash, and Web2Py. Streamlit was introduced as a pure Python
framework, showcasing its competitive advantage in bridging the skills
gap and reducing development time from weeks to hours. The reader
was then guided through the installation and use of Streamlit to create
basic applications on demand. In the next chapter, we will explore the
core components of Streamlit, provide a comprehensive overview of its
application programming interface, and demonstrate how it can be used
to develop customized applications.

30

CHAPTER 2

Streamlit Basics

Streamlit simplifies the process of creating interfaces, displaying text,
visualizing data, rendering widgets, and managing web applications from
inception to deployment, thanks to its convenient and highly intuitive API,
as highlighted in the Appendix. This chapter covers techniques for creating
input forms, implementing conditional flows, handling errors, mutating
dataframes, and rendering basic charts. After mastering the basics,
developers will be equipped to produce, manage, and deploy a range of
simple web applications locally. These applications may include data
explorers, machine learning tools, multimedia handlers, data wrangling
utilities, and other general-purpose solutions. Once comfortable with
these fundamentals, developers can move on to creating more advanced
and complex applications, which will be explored in subsequent chapters.

2.1. Creating a Basic Application

By leveraging Streamlit’s powerful API, we can create a wide range of
applications—from simple microservices to complex systems integrated
with distributed architectures. Streamlit allows us to adapt to the diverse
needs of our users with ease. In this section, however, we will focus on
exploring simpler applications before advancing to more complex ones in
the sections that follow.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 31
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_2

https://doi.org/10.1007/979-8-8688-1826-4_2#DOI

CHAPTER 2 STREAMLIT BASICS

2.1.1. Generating User Input Forms

Creating forms in Streamlit is as simple as grouping multiple input widgets,
such as text and number fields, on a page along with a button to trigger
actions like saving entries to a database or storing them in the session
state. However, a key consideration with this approach is that Streamlit
automatically reruns the entire script from top to bottom whenever the
user interacts with any widget. While this ensures a logical and seamless
flow for the program, there are situations where it is more practical to
group input widgets and rerun the script only when explicitly prompted by
the user. This can be achieved using the st.form command.

Listing 2-1. input_form.py

import streamlit as st
from datetime import date # Import to use the current date

Create a feedback form
with st.form('feedback form'):
st.header('Feedback Form')

Organize form inputs into columns

col1, col2 = st.columns(2)

with coli1:
name = st.text_input('Please enter your name’,
placeholder="Your full name')
rating = st.slider('Rate this app (0 = Worst, 10 =
Best)', 0, 10, 5)

with col2:
dob = st.date_input('Enter your date of birth")
recommend = st.radio('Would you recommend this app to
others?', ('Yes', 'No'))

Submit button
submit button = st.form submit button('Submit")

32

http://form.py

CHAPTER 2 STREAMLIT BASICS

Handle form submission
if submit_button:
Check for empty name
if not name.strip():
st.error('Name cannot be empty. Please provide
your name.')
Check for valid date of birth
elif dob > date.today():
st.error('Date of birth cannot be in the future.')
else:
st.success('Thank you for your feedback!")
st.write('**Name:**', name)
st.write('**Date of Birth:**', dob)
st.write('**Rating:**', rating)
st.write('**Would Recommend?:**', recommend)

A Streamlit form can be created using a with statement in combination
with the st.form command. In Listing 2-1, we first organize the widgets
within the form into two equal-width columns using the st.columns
command. In the first column, we include a text input and a slider widget,
implemented with the st.text_input and st.slider commands,
respectively. In the second column, we add a date input and a radio button
widget using the st.date input and st.radio commands.

Within the same with statement, we include a form submit button
using the st.form_submit_button command. This button allows all
the form's widget entries to be submitted collectively with a single click,
regardless of how many items are included. It is important to note that st.
form_submit_button differs from st.button, and without it, Streamlit will
raise an error for forms created using st. form.

As demonstrated in Figure 2-1, all widgets are grouped into a single
form using the st.form command. Once the form submit button is clicked,
the widget entries are processed together, and the output is displayed as
shown in Figure 2-2.

33

CHAPTER 2 STREAMLIT BASICS

Feedback Form

Please enter your name Enter your date of birth
2024/12/16
Rate this app (0 = Worst, 10 = Best) Would you recommend this app to others?
.. © Yes
0 10 No
Submit

Figure 2-1. Streamlit input form (output of Listing 2-1)

Feedback Form

Please enter your name Enter your date of birth
John Smith 1992/02/12
Rate this app (0= Worst, 10 = Best) Would you recommend this app to others?
= O ves
] 10 No
Submit

Thank you for your feedback!

Mame: John Smith
Date of Birth: 1992-e2-12
Rating: =

Would Recommend?: Yes

Figure 2-2. Instantiated Streamlit input form (output of Listing 2-1)

34

CHAPTER 2 STREAMLIT BASICS

2.1.2. Introducing Conditional Flow

Introducing conditional flow in your Streamlit applications may be
necessary, where certain actions depend on prior actions or the state of
widgets. This is particularly useful for guiding users to correctly fill out
forms and use the application as intended. Without conditional flow, your
application may encounter errors if users interact with it incorrectly.

Example 1

Listing 2-2. conditional_flow_1.py
import streamlit as st

Function to display the name
def display name(name):
st.info(f'**Name:** {name}")

Input for name
name = st.text_input('Please enter your name')

Validation: If name is entered, show info; else, show an
error message
if name:
display name(name)
else:
st.error('No name entered')

In Listing 2-2, we use an if statement to check whether the name
field has been filled out. If the field is empty, the user will be shown an
error message (Figure 2-3). If the field is not empty, a function is called to
display the user's entry (Figure 2-4).

35

CHAPTER 2 STREAMLIT BASICS

Example 2

Listing 2-3. conditional_flow_2.py
import streamlit as st

Function to display the name
def display name(name):
st.info(f'**Name:** {name}")

Input for name
name = st.text_input('Please enter your name')

Check if name is entered
if not name:

st.error('No name entered')
else:

display name(name)

In Listing 2-3, we again use an if statement to check whether the
name field is not empty. The difference here is that we use the st.stop
command to halt the execution of the script if the field is empty. If the
field is not empty, the script continues, displaying the entered name. The
advantage of this approach is that it removes the need for an additional if
statement, simplifying the script. In terms of functionality, both methods
are essentially the same.

Please enter your name

No name entered

Figure 2-3. Implementing conditional flow (output of Listing 2-2)

36

CHAPTER 2 STREAMLIT BASICS

Conditional flow programming can be applied to both simple and
complex applications. This technique can be scaled up and implemented
with nested if statements, while loops, and other methods when needed.

Please enter your name

John Smith

Name: John Smith

Figure 2-4. Implementing conditional flow continued (output of
Listing 2-2)

2.1.3. Managing and Debugging Errors

If you are running Streamlit in development mode and have configured
showErrorDetails = True as shown in Table 3-1 in Section 3.1, Streamlit
will display runtime exceptions on the web page, similar to how an IDE
would show such messages in the console. This is not ideal, as users

may find it difficult to understand the error and could become confused.
More importantly, leaving exceptions unhandled can trigger a series of
fatal errors in later parts of your code, potentially affecting other systems.
Additionally, Streamlit will reveal the specific segment of your code that
caused the exception, which could pose a risk to intellectual property if
your source code is subject to such protections.

Listing 2-4. without_try_and_except.py
import streamlit as st

Create columns for inputs
col1l, col2 = st.columns(2)

with col1:

37

http://except.py

CHAPTER 2 STREAMLIT BASICS

number 1 = st.number input('Please enter the first
number',value=0,step=1)

with col2:
number 2 = st.number_input('Please enter the second
number',value=0,step=1)

st.info(f"**{number 1}/{number 2}=** {number 1/number 2}")

Running Listing 2-4, we can create a simple application where one
number is divided by another. If the user divides by any number other than
zero, the application will function correctly and display an output similar
to Figure 2-5. However, if the user tries to divide by zero, Python will raise
a zero division error, which will be displayed by Streamlit as shown in

Figure 2-6.
Please enter the first number Please enter the second number
I A 1 =
1/1=1.0

Figure 2-5. Running Streamlit without a try and except block
without an error (output of Listing 2-4)

38

CHAPTER 2 STREAMLIT BASICS

Please enter the first number Please enter the second number

1 - + 0 - %

ZeroDivisionError: division by zero

Traceback:

File "C:\Use

-s\Mohammad Khorasani\Desktop\1l.py", line 12, in <module>

'*x{number_1}/{number_2}=++ {number_1/number_2}')

Figure 2-6. Running Streamlit without a try and except block with
an error (output of Listing 2-4)

Example 1

You can limit the range of input values for the st.number input widget,
but let us assume for a moment that you could not. In such a case, the
solution would be to use try and except blocks in your code, as shown in
Listing 2-5, wherever there is a potential for an unforeseen issue. In this
example, we attempt to execute the potentially problematic part of the
script with the try statement. If it fails due to a ZeroDivisionError, itis
handled with an except ZeroDivisionError statement, which displays a
customized error message to the user, as shown in Figure 2-7. If the error
is caused by any other issue, a general except statement can be used to
bypass this part of the code without executing it.

Listing 2-5. try_and_except_l.py
import streamlit as st

Create columns for inputs
col1l, col2 = st.columns(2)

with col1:

39

CHAPTER 2 STREAMLIT BASICS

number 1 = st.number input('Please enter the first number’,
value=0, step=1)

with col2:
number 2 = st.number_input('Please enter the second
number', value=0, step=1)

try:

st.info(f'**{number_ 1}/{number 2}=** {number 1/number 2}")
except ZeroDivisionError:

st.error('Cannot divide by zero')

Please enter the first number Please enter the second number

1 =~ @ |0 - #
Cannot divide by zero

Figure 2-7. Running Streamlit with a try and except block with an
error (output of Listing 2-5)
Example 2

Another way to manage exceptions is by using a general except
statement, which displays a curated message of the actual error, as shown
in Figure 2-8. This approach can be especially helpful for debugging

the script during development while still maintaining a positive user
experience by not revealing too much technical detail to the user.

Listing 2-6. try_and_except_2.py
import streamlit as st

Create columns for inputs
col1l, col2 = st.columns(2)

40

CHAPTER 2 STREAMLIT BASICS

with col1:
number 1 = st.number input('Please enter the first number’,
value=0, step=1)

with col2:
number 2 = st.number input('Please enter the second
number', value=0, step=1)

try:

st.info(f'**{number 1}/{number 2}=** {number 1/number 2}")
except Exception as e:

st.error(f'Error: {e}')

Please enter the first number Please enter the second number

1 - o+ 0 - o+
Error: division by zero

Figure 2-8. Running Streamlit with a try and except block with an
error (output of Listing 2-6)

2.2. Mutating Dataframes

Given Streamlit’s focus on developing machine learning and data science
applications, developers often need to mutate dataframes based on user
input or requirements. In this section, we will introduce a non-exhaustive
list of some of the most commonly used methods for mutating Pandas
dataframes.

41

CHAPTER 2 STREAMLIT BASICS

2.2.1. Filter

Dataframes can be filtered using the method shown in Listing 2-7. By
specifying a condition for a column, whether numerical or string, such as
df[df['Column 1'] > -1], we can filter the rows based on that condition,
as shown in Figure 2-9.

Listing 2-7. mutate_dataframe_filter.py

import streamlit as st
import pandas as pd
import numpy as np

Set seed for reproducibility
np.random.seed(0)

Create DataFrame with random data
df = pd.DataFrame(
np.random.randn(4, 3),
columns=("Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame
st.subheader('Original DataFrame")
st.dataframe(df)

Filter the DataFrame (mutating it)
df = df[df['Column 1'] > -1]

Display the mutated DataFrame
st.subheader('Mutated DataFrame")
st.dataframe(df)

42

http://filter.py

CHAPTER 2 STREAMLIT BASICS

Original DataFrame

Columnl Column2 Column3

0 1.7641 0.4002 0.9787
| 2.2409 1.8676 -0.9773
0.9501 -0.1514 -0.1032

0.4106 0.144 1.4543

Mutated DataFrame

Columnl Column2 Column3
1.7641 0.4002 0.9787

1 2.2409 1.8676 -0.9773
0.9501 -0.1514 -0.1032

0.4106 0.144 1.4543

Figure 2-9. Filtering Pandas dataframes (output of Listing 2-7)

2.2.2. Select

Dataframe columns can be selected using the method shown in Listing 2-8.
We can specify which columns to keep by their names, for example,
df[['Column 1', 'Column 2']], and remove other columns, as shown in

43

CHAPTER 2 STREAMLIT BASICS

Figure 2-10. Alternatively, the same result can be achieved using the drop
command, like df.drop(columns=["'Column 3']).

Listing 2-8. mutate_dataframe_select.py

import streamlit as st
import pandas as pd
import numpy as np

Set the seed for reproducibility
np.random.seed(0)

Create a DataFrame with random numbers
df = pd.DataFrame(
np.random.randn(4, 3),
columns=("Column 1", 'Column 2', 'Column 3")

)

Display the original DataFrame
st.subheader('Original DataFrame")
st.dataframe(df) # Use st.dataframe for interactivity

Mutate the DataFrame by selecting specific columns
df = df[['Column 1", 'Column 2']]

Display the mutated DataFrame
st.subheader('Mutated DataFrame')
st.dataframe(df) # Use st.dataframe for interactivity

44

CHAPTER 2 STREAMLIT BASICS

Original DataFrame

1.7641 0.4002 0.9787
2.2409 1.8676 -0.9773
0.9501 -0.1514 -0.1032

0.4106 0.144 1.4543

Mutated DataFrame

1.7641 0.4002
2.2409 1.8676
0.9501 -0.1514

0.4106 0.144

Figure 2-10. Selecting Pandas dataframe columns (output of
Listing 2-8)

2.2.3. Arrange

Dataframe columns can be arranged and sorted in ascending and/or
descending order based on the numerical or nominal value of a specified
column, as shown in Listing 2-9. We can specify which column to sort

45

CHAPTER 2 STREAMLIT BASICS

and in which order, for example, df.sort_values(by="Column 1',
ascending=True), as shown in Figure 2-11. Once the column is sorted,
the index will be adjusted to reflect the new order. If needed, you can reset
the index using the df.reset_index(drop=True) command to restart the
index from zero.

Listing 2-9. mutate_dataframe_arrange.py

import streamlit as st
import pandas as pd
import numpy as np

Set the seed for reproducibility
np.random.seed(0)

Create DataFrame with random numbers
df = pd.DataFrame(
np.random.randn(4, 3),
columns=("'Column 1', 'Column 2', 'Column 3')

)

Display the original DataFrame
st.subheader('Original DataFrame")
st.dataframe(df) # Use st.dataframe for interactive display

Mutate the DataFrame by sorting by 'Column 1'
df = df.sort values(by='Column 1', ascending=True)

Display the mutated DataFrame
st.subheader('Mutated DataFrame")
st.dataframe(df) # Use st.dataframe for interactive display

46

http://arrange.py

CHAPTER 2 STREAMLIT BASICS

Original DataFrame

Columnl Column2 Column3
1.7641 0.4002 0.9787

1 2.2409 1.8676 -0.9773
2 0.9501 -0.1514 -0.1032

3 0.4106 0.144 1.4543

Mutated DataFrame

Columnl Column2 Column3
3 0.4106 0.144 1.4543
2 0.9501 -0.1514 -0.1032
0 1.7641 0.4002 0.9787

1 2.2409 1.8676 -0.9773

Figure 2-11. Sorting Pandas dataframe columns (output of
Listing 2-9)

2.2.4. Mutate

Dataframe columns can be mutated by assigning new columns based on
the values of another column, as shown in Listing 2-10. We can specify a

47

CHAPTER 2 STREAMLIT BASICS

simple lambda function to apply to the values of an existing column, for
example, Column_4 = lambda x: df['Column 1']*2, to compute the
output shown in Figure 2-12.

Listing 2-10. mutate_dataframe_lambda.py

import streamlit as st
import pandas as pd
import numpy as np

Set the seed for reproducibility
np.random.seed(0)

Create DataFrame with random numbers
df = pd.DataFrame(
np.random.randn(4, 3),
columns=("'Column 1", 'Column 2', 'Column 3')

)

Display the original DataFrame
st.subheader('Original DataFrame")
st.dataframe(df)

Create a new column 'Column 4' based on 'Column 1'
df = df.assign(Column_4 = lambda x: x['Column 1'] * 2)

Display the mutated DataFrame
st.subheader('Mutated DataFrame")
st.dataframe(df)

48

http://lambda.py

CHAPTER 2 STREAMLIT BASICS

Original DataFrame

Columnl Column2 Column3
) 1.7641 0.4002 0.9787
1 2.2409 1.8676 -0.9773
2 0.9501 -0.1514 -0.1032

3 0.4106 0.144 1.4543

Mutated DataFrame

Columnl Column2 Column3 Column_4

0 1.7641 0.4002 0.9787 3.5281
2.2409 1.8676 -0.9773 4.4818

2 0.9501 -0.1514 -0.1032 1.9002
0.4106 0.144 1.4543 0.8212

Figure 2-12. Mutating Pandas dataframes (output of Listing 2-10)

2.2.5. Group By

Sometimes, it may be necessary to group or aggregate the values in one

or more columns of a dataframe. This can be done in Pandas using the
method shown in Listing 2-11. We can specify which column or columns to
group by using the df.groupby (['Column 1", 'Column 2']) command.

49

CHAPTER 2 STREAMLIT BASICS

This will reindex the dataframe and group the relevant rows together, as
shown in Figure 2-13.

Listing 2-11. mutate_dataframe_groupby.py

import streamlit as st
import pandas as pd
import numpy as np

Create a DataFrame with random integers between 0 and 100
df = pd.DataFrame(

np.random.randint(0, 101, size=(6, 3)),

columns=("Exam 1', "Exam 2', "Exam 3")

)

Assign 'Name' and 'Category' columns directly

df['Name'] = ['John', 'Jessica', 'Jessica', 'John', 'John',
'Jessica']

df[lcategoryl] = [IBI’ IAI, lA" IBI’ IAI’ IBI]

Display the original DataFrame

st.subheader('Original DataFrame")
st.dataframe(df)

Group by 'Name' and 'Category' and get the first row of
each group
df grouped = df.groupby(['Name', 'Category']).first()

Display the mutated DataFrame after grouping
st.subheader('Mutated DataFrame")
st.dataframe(df _grouped)

50

http://groupby.py

CHAPTER 2 STREAMLIT BASICS

2.2.6. Merge

Multiple dataframes can be merged together in Pandas using a common
column as a reference, as shown in Listing 2-12. We can specify which
column to merge on and whether the merge should be a union or
intersection of both dataframes using the df1.merge(df2, how="inner',
on="Name') command. This will create a combined dataframe, as shown in
Figure 2-14.

Listing 2-12. mutate_dataframe_merge.py

import streamlit as st
import pandas as pd

Create the first DataFrame (df1)
df1 = pd.DataFrame(data={'Name': ['Jessica', 'John'],
"Exam 1': [77, 56]})

Create the second DataFrame (df2)
df2 = pd.DataFrame(data={"'Name': ['Jessica', 'John'],
"Exam 2': [76, 97]})

Create the third DataFrame (df3)
df3 = pd.DataFrame(data={'Name': ['Jessica', 'John'],
"Exam 3': [87, 95]})

Display the original dataframes
st.subheader('Original DataFrames")
st.dataframe(df1)

st.dataframe(df2)

st.dataframe(df3)

Merge the dataframes on 'Name' column using inner join
df merged = df2.merge(df3, how="inner', on='Name")
df merged = dfi.merge(df merged, how="'inner', on='Name")

51

http://merge.py

CHAPTER 2 STREAMLIT BASICS

Display the mutated dataframe after merging
st.subheader('Mutated DataFrame")
st.dataframe(df merged)

Original DataFrame

Examl Exam2 Exam3 Name Category

46 81 51 John B
1 87 15 17 Jessica A
97 27 5 Jessica A
98 18 49 John B
72 87 9 John A
5 6 84 65 Jessica B

Mutated DataFrame

Name Category Examl Exam2 Exam3
A 87 15 17

6 84 65

A 72 87 9

John B 46 81 51

Figure 2-13. Grouping Pandas dataframes (output of Listing 2-11)

52

CHAPTER 2 STREAMLIT BASICS

2.2.7. Data Editor

Streamlit's st.data_editor widget offers a powerful and interactive way to
edit data within a dataframe directly in the app. This feature is particularly
useful for developers working on machine learning and data science
applications, where the ability to make real-time adjustments to data
on the fly can save some valuable time. Users can update, add, or delete
data entries without needing to leave the application or manually edit the
source code. The changes made through the st.data_editor widget are
immediately reflected in the dataframe, making it easier to experiment
with different data configurations and see the results in real-time.

In addition to its interactive capabilities, the st.data_editor
widget also supports various customization options to tailor the editing
experience to specific needs. Developers can configure the widget to
allow or restrict certain types of edits, ensuring that the data integrity is
maintained.

2.3. Rendering Static and Interactive Charts

Data visualization is where Streamlit truly excels. The ease with which

a variety of static and interactive charts can be created and displayed is
impressive. Streamlit natively supports a wide range of charts, including
but not limited to bar, line, and area charts, as well as graphs, maps, and
other types of interactive and non-interactive visuals. Additionally, there
are numerous third-party plotting libraries that can be integrated with
Streamlit. In this section, we will create several examples of static and
interactive charts using data from a Pandas dataframe.

53

CHAPTER 2 STREAMLIT BASICS

2.3.1. Static Bar Chart

A static bar chart can be generated by inputting a Pandas dataframe into a
Matplotlib figure using the method shown in Listing 2-13. We can specify
the chart type by setting kind=“bar’. Other Matplotlib parameters can be
found at https://matplotlib.org/stable/api/ as gen/matplotlib.
pyplot.plot.html. The generated chart is shown in Figure 2-15.

Listing 2-13. static_bar_chart.py

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

Create a DataFrame

df = pd.DataFrame(data={'Name': ['Jessica', 'John'],
"Exam 1': [77, 56],
"Exam 2': [76, 97],
"Exam 3': [87, 95]})

Set the 'Name' column as the index and plot the bar chart
df.set_index('Name").plot(kind="bar', stacked=False,
xlabel="Name', ylabel='Exam')

Display the plot using Streamlit
st.pyplot(plt)

54

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

CHAPTER 2 STREAMLIT BASICS

Original DataFrames

Name Exam 1
) Jessica 77
John 56
Name Exam 2
0 Jessica 76
1 John 97
Name Exam 3
Jessica 87
1 John 95

Mutated DataFrame

Name Examl1l Exam2 Exam3
0 Jessica 17 76 87
John 56 97 95

Figure 2-14. Merging Pandas dataframes (output of Listing 2-12)

55

CHAPTER 2 STREAMLIT BASICS

2.3.2. Static Line Chart

Similarly, a static line chart can be generated by inputting a Pandas
dataframe into a Matplotlib figure by using the method shown in
Listing 2-14. We can specify the chart type and the option of having
subplots by setting kind="1ine", subplots=True.

Other Matplotlib parameters can be found at https://matplotlib.
org/stable/api/ as gen/matplotlib.pyplot.plot.html. The generated
chart is shown in Figure 2-16.

Listing 2-14. static_line_chart.py

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

Create a DataFrame

df = pd.DataFrame(data={'Exam': ['Exam 1', 'Exam 2', 'Exam 3'],
'Jessica': [77, 76, 87],
'John': [56, 97, 95]})

Set 'Exam' as the index and plot the line chart
df.set_index('Exam').plot(kind="'line", xlabel="Exam',
ylabel="Score', subplots=True)

Display the plot using Streamlit
st.pyplot(plt)

56

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
http://chart.py

CHAPTER 2 STREAMLIT BASICS

100 4

Exam

John

o
)
@
@
8

Name

Figure 2-15. Generating a static bar chart (output of Listing 2-13)

87.5
—— |essica
85.0 4
o 82.54
o
o 80.04
77.5
—— John >
90 /'
v 80 ~
o
a 704
60
Exa.m 1 ' ' I Exa‘m 2 ' ' I Exalm 3

Exam

Figure 2-16. Generating a static line chart (output of Listing 2-14)

2.3.3. Interactive Line Chart

An interactive line chart can be generated by inputting a Pandas dataframe
into a Plotly figure by using the method shown in Listing 2-15. We can
declare the chart type and its associated properties by using the JSON

57

CHAPTER 2 STREAMLIT BASICS

notation used with all Plotly charts and figures. We can also interactively
return selected points on the chart using the on_select argument for
st.plotly chart widget. Other Plotly parameters can be found at
https://plotly.com/python/line-charts/; we will cover Plotly line
charts in greater depth in Section 4.2. The generated chart is shown in
Figure 2-17.

Listing 2-15. interactive_line_chart.py

import streamlit as st
import pandas as pd
import plotly.graph objects as go

Create a DataFrame

df = pd.DataFrame(data={
"Exam': ['Exam 1', 'Exam 2', 'Exam 3'],
'Jessica': [77, 76, 87],
'John': [56, 97, 95]

9

Create the plotly figure with line plots

fig = go.Figure(data=[
go.Scatter(name="Jessica', x=df['Exam'], y=df['Jessica'],
mode="lines+markers'),
go.Scatter(name="John"', x=df['Exam'], y=df['John'],
mode="1lines+markers")

D

Update the layout
fig.update layout(
xaxis title="Exam',
yaxis title='Score',
legend title="Name',

58

https://plotly.com/python/line-charts/;
http://chart.py

CHAPTER 2 STREAMLIT BASICS

Display the plot using Streamlit with selection enabled
event = st.plotly chart(fig, on_select="rerun")

Access selected points
if event and event.selection:
selected data = []
for point in event.selection.points:
selected data.append({
"Exam': point['x'],
"‘Student': point['curve number'],
‘Score': point['y"]
)

Map curveNumber to student names
for item in selected data:
item['Student'] = fig.data[item['Student']].name

st.write('Selected Exam Scores:"')
st.dataframe(selected data)

Selected Exam Scores:

Figure 2-17. Generating an interactive line chart (output of
Listing 2-15)

59

CHAPTER 2 STREAMLIT BASICS

2.3.4. Interactive Map

Likewise, an interactive geospatial map can be generated by inputting a
Pandas dataframe containing the longitude and latitude of a set of points
into a Plotly figure using the method shown in Listing 2-16. Additionally,
we can specify the exact geospatial location to zoom into by setting geo_
scope="usa'. Other Plotly parameters can be found at https://plotly.
com/python/scatter-plots-on-maps/; we will cover Plotly geospatial
charts in greater depth in Section 4.2. The generated map is shown in
Figure 2-18.

Listing 2-16. interactive_map.py

import streamlit as st
import pandas as pd
import plotly.graph objects as go

Data with university locations
df = pd.DataFrame(data={'university': ['Harvard University',
'Yale University', 'Princeton University',
"Columbia University', 'Brown
University', 'Dartmouth University',
‘University of Pennsylvania', 'Cornell
University'],
'latitude': [42.3770, 41.3163, 40.3573,
40.8075, 41.8268, 43.7044, 39.9522, 42.4534],
'longitude': [-71.1167, -72.9223, -74.6672,
-73.9626, -71.4025, -72.2887, -75.1932,
-76.4735]
1

Create the scattergeo plot
fig = go.Figure(data=go.Scattergeo(
lon=df['longitude'],

60

https://plotly.com/python/scatter-plots-on-maps/;
https://plotly.com/python/scatter-plots-on-maps/;
http://map.py

CHAPTER 2 STREAMLIT BASICS

lat=df['latitude'],

text=df['university'],

mode="markers"',

marker=dict(size=10, color="red', opacity=0.7)

)

Update the layout to focus on the USA and set additional map
properties
fig.update layout(
geo_scope='usa’,
geo=dict(
projection type='albers usa',
showland=True,
landcolor="lightgray’,
subunitwidth=1,

)

Display the map using Streamlit
st.plotly chart(fig)

Figure 2-18. Generating an interactive map (output of Listing 2-16)

61

CHAPTER 2 STREAMLIT BASICS

2.4. Developing the User Interface

Typically, developing a user interface for a web application requires

a separate skill set related to graphical design and usability studies. A
frontend developer starts by conceptualizing their idea with a wireframe
diagram that lays out the elements of the page. This is then iteratively
refined and tested to create the final user interface. Streamlit has largely
simplified this process with its intuitive, responsive, and standardized
interface, allowing the developer to render a web page without worrying
about intricate design details.

In other words, Streamlit interfaces are plug-and-play, enabling
developers to focus on the logic of their program while leaving the visual
implementation to Streamlit. However, for those who need something
more customized, they can integrate their own HTML and/or JavaScript
components. Customizability and external components will be covered in
subsequent chapters.

In this section, we will develop an application similar to the dataframe
demo application from the previous chapter as an example of how to
create a basic user interface.

Listing 2-17. dataframe_demo.py

import streamlit as st
import pandas as pd
import plotly.express as px

Sidebar for program selection

program = st.sidebar.selectbox('Select program', ['Dataframe
Demo', 'Other Demo'])

code = st.sidebar.checkbox('Display code')

Program logic
if program == 'Dataframe Demo':

62

http://demo.py

CHAPTER 2 STREAMLIT BASICS

df = px.data.stocks()
st.title('DataFrame Demo")

Multiselect for stock selection
stocks = st.multiselect('Select stocks', df.columns[1:],
default=df.columns[1:])

Displaying stock data as a DataFrame
st.subheader('Stock value')
st.write(df[['date'] + stocks].set index('date'))

Plotting a Plotly line chart

fig = px.line(df, x="date', y=stocks, hover data={'date':
"I%Y %b %d'})

st.write(fig)

Displaying the code when checkbox is selected
if code:
st.code(
import streamlit as st
import pandas as pd
import plotly.express as px

df = px.data.stocks()
st.title('DataFrame Demo")

program = st.sidebar.selectbox('Select program', ['Dataframe
Demo', 'Other Demo'])
code = st.sidebar.checkbox('Display code')

if program == 'Dataframe Demo':
df = px.data.stocks()
st.title('DataFrame Demo")

63

CHAPTER 2 STREAMLIT BASICS CHAPTER 2 STREAMLIT BASICS

stocks = st.multiselect('Select stocks', df.columns[1:],
default=df.columns[1:])

st.subheader('Stock value')

st.write(df[['date'] + stocks].set index('date"))

fig = px.line(df, x="date', y=stocks, hover data={'date':
"1%Y %b %d'})

st.write(fig)

)

elif program == 'Other Demo':
st.title('Other Demo")

As always, we begin by importing the stack of dependencies that
we will use for this application, namely Streamlit, Pandas for dataframe
handling, and Plotly Express to plot a simple time-series chart of the
value of several blue-chip stocks over time. We then download a dataset
from Plotly’s list of available open source datasets and initialize our user
interface by invoking a title with the st.title command.

Next, we add a st.sidebar.selectbox command to define a list of
programs/pages for this application. We follow this with a checkbox on the
sidebar to display our code using the st.sidebar.checkbox command.
Widgets can be added to the sidebar by appending the st. sidebar prefix if
applicable. We then use a st.multiselect command to select the list of stocks we
want to visualize. The selection will filter the dataframe containing the stock
values, and the filtered data will be displayed using the st.write command.

Afterward, we will use the filtered dataframe to create a time-series
line chart with Plotly, using the reference at https://plotly.com/python/
time-series/. Once the figure is generated, it can be displayed with
st.write, known as the pocket knife command due to its versatility in
rendering virtually anything. Finally, we will use a st.code command to
present our snippet of code if the checkbox is selected by the user. And
there you have it (Figures 2-19 and 2-20), a basic dataframe application in
just over 40 lines of code.

64

https://plotly.com/python/time-series/
https://plotly.com/python/time-series/

CHAPTER 2 STREAMLIT BASICS

DataFrame Demo

St wineh
| Gooc « J s« J iz = v «] irix « fousrr < | ov
Stock value
L il 06 105Y! 1
1 LW iz 1
407

Figure 2-20. Dataframe demo application continued (output of
Listing 2-17)

65

CHAPTER 2 STREAMLIT BASICS

2.5. Summary

This chapter has certainly been a thorough one. By now, you should be
well-acquainted with the core principles and capabilities of Streamlit. You
have explored the diverse set of commands in the Streamlit API, covering
everything from displaying text, tables, and charts to rendering interactive
widgets and multimedia objects, as well as commands that allow you to
organize the page and optimize Streamlit for efficient use with big data.

In the latter part of the chapter, we focused on the basics of creating a
simple web application. This included creating forms, implementing
conditional flow, managing exceptions, mutating data, rendering various
visualizations, and integrating all of these elements into a cohesive user
interface. In short, after reviewing this chapter, you should feel confident
in your ability to start developing your own basic web applications using
Streamlit.

66

CHAPTER 3

Developing the
User Interface

With Streamlit, developers can focus on implementing backend logic
while relying on the framework to handle most of the frontend tasks.
Additionally, Streamlit allows you to create responsive interfaces for PC,
tablet, and mobile platforms effortlessly, with no extra overhead. However,
if more bespoke and tailored applications are required, Streamlit offers

a significant degree of frontend customization without requiring any
knowledge of HTML, CSS, or JavaScript. Developers can configure their
applications with various color schemes, fonts, and appearances, both
graphically and programmatically.

Streamlit also enables you to structure and organize web pages
effectively using a combination of a sidebar, columns, expanders, and
containers. These elements work together to enhance the user experience
while optimizing the use of page space. Additionally, placeholders and
progress bars allow you to render dynamic content on demand or in
response to events. Most importantly, Streamlit supports the creation
of multiple pages and nested subpages, enabling a highly modular and
scalable approach to application development.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Fernandez 2025 67
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_3

https://doi.org/10.1007/979-8-8688-1826-4_3#DOI

CHAPTER 3 DEVELOPING THE USER INTERFACE

3.1. Designing the Application

When designing a Streamlit application, we can utilize its wide array of
native methods to customize the page exactly as desired. From color
schemes and themes to columns, expanders, sidebars, and placeholders,
the design possibilities are virtually limitless.

3.1.1. Configuring the Page

With Streamlit, you can configure various attributes of a web page, such
as the page layout, initial sidebar state, page title (as displayed in the
browser), icon, hamburger menu state, footer, and more. While some of
these settings can be configured directly within your script, others must
be set in the global configuration file, /. streamlit/config.toml, as
discussed in Section 1.2.

Basic Page Configuration

Listing 3-1 can be used to configure the page title, icon, layout, initial
sidebar state, and menu items, as shown in Figure 3-1. Note that the page
icon supports .1ico files, and you can use the Pillow package to import
and handle images. The page layout can be set to either centered or wide,
while the initial sidebar state can be configured as auto, expanded, or
collapsed. Additionally, you can customize one or more of the following
pages in the hamburger menu: Get help, Report a bug, or About. The

Get help and Report a bug pages can only be instantiated with a URL

to redirect users to another web page. The About page, however, can be
displayed as a modal window, as shown in Figure 3-2.

68

CHAPTER 3 DEVELOPING THE USER INTERFACE
Listing 3-1. page_config.py

import streamlit as st
from PIL import Image

icon = Image.open('favicon.ico")

Page configuration
st.set page config(
page title='"Hello World',
page_icon=icon,
layout="centered’,
initial sidebar state='auto',
menu_items={
'Get Help': 'https://streamlit.io/',
'Report a bug': 'https://github.com',
"About': 'About your application: **Hello World**'

)

Set up titles

title = 'Hello World'
st.sidebar.title(title)
st.title(title)

69

http://config.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

w il Hetio word x |+ - a x
@ hitpy/ocalbost 850 * O &
Deptoy
Hello World
Hello World

Figure 3-1. Streamlit page configured with Listing 3-1

About

About your application: Hello World

Made with Streambit v1 411

It/ streamlit. b
Copyright 2024 Snowflake inc. All ights reserved,

Figure 3-2. Displaying the About modal window

70

CHAPTER 3 DEVELOPING THE USER INTERFACE

Removing Footer and Hamburger Menu

You can remove the default footer provided by Streamlit, as well as the
entire hamburger menu, by using the commands shown in Listing 3-2.
The resulting output is illustrated in Figure 3-3. However, please note that
while modifying the CSS may work in the current version of Streamlit,
this method is not guaranteed to function in future versions if the internal
implementation changes.

Listing 3-2. remove_footer_menu.py

Custom CSS to hide header and footer

hide streamlit style =

<style>
/* Hide Streamlit header */
header {
visibility: hidden;
}
/* Hide Streamlit footer */
footer {
visibility: hidden;
}
</style>

st.markdown(hide streamlit style, unsafe allow html=True)

71

http://menu.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

Hello World

Hello World

Figure 3-3. Removed footer and hamburger menu from the page

Adding a Customized Footer

Additionally, you can add a customized footer by using the markdown
command shown in Listing 3-3. The resulting output is displayed in
Figure 3-4.

Listing 3-3. footer.py

Add custom footer to the sidebar
custom footer style = """
<div class="markdown-text-container stText" style="width:
698px; ">
<footer>
<p></p>
</footer>
<div style="font-size: 12px;">Hello world v 0.1</div>
<div style="font-size: 12px;">Hello world LLC.</div>
</div>

72

http://footer.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

mnn

st.sidebar.markdown(custom footer style, unsafe allow_
html=True)

Advanced Page Configuration

In addition to the basic configurable settings of a Streamlit web page,
numerous other parameters can be adjusted by modifying the global
configuration file /.streamlit/config.toml, as discussed earlier in Section
1.2. These parameters include settings for global, logger, client, runner,
server, browser, mapbox, deprecation, AWS S3, and theme configurations,
as outlined in Tables 3-1, 3-2, and 3-3. For more details, refer to https://
docs.streamlit.io/library/advanced-features/configuration. An
example of configuring the web page theme is provided in Listing 3-4.

Table 3-1. config.toml file parameters

Configuration Options

[global]
¢ disableWidgetStateDuplicationWarning = False

Streamlit watchdog will check for duplicate values being set to a widget through
session state and the widget key. If this parameter is disabled, Streamlit will not
display a warning message if duplicate values are found.

o showWarningOnDirectExecution = True

Streamlit will display a warning when you try to run a script using python script.py
when this parameter is set to true.

(continued)

73

https://docs.streamlit.io/library/advanced-features/configuration
https://docs.streamlit.io/library/advanced-features/configuration
http://script.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-1. (continued)

Configuration Options

[logger]
e level = ‘info’
Level of logging specified for Streamlit’s internal logger. Available options include
‘error’, ‘warning’, ‘info’, and ‘debug’.
* messageFormat = ‘%(asctime)s %(message)s’.
This parameter will specify the string format for logging messages.
[client]
o showErrorDetails = ‘full’

Controls whether an uncaught exception and/or deprecation warning will be
displayed in the browser. Available options include ‘full’, ‘stacktrace’, ‘type’, ‘none’,
True, and False.

¢ toolbarMode = ‘auto’

Controls the visibility of items located in the toolbar, options, and settings menu of
the application. Available options include ‘auto’, ‘developer’, ‘viewer’, and ‘minimal’.

o showSidebarNavigation = True

Controls whether the sidebar page navigation will be displayed in a multipage
application.

[runner]
® magicEnabled = True

Setting this parameter to true will allow you to write strings and variables outside of
a st.write command.

e fastReruns = True

(continued)

74

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-1. (continued)

Configuration Options

Setting this parameter to true will handle script rerun requests immediately, making
applications far more responsive.

* enforceSerializableSessionState = False

Setting this parameter to true will raise exceptions if unserializable data is added to
the session state.

e enumCoercion = ‘name0Only’

Controls how certain widgets such as the radio, selectbox, and muitiselect
widgets coerce Enum numbers. Available options include ‘off’, ‘nameOnly’, and
‘nameAndValue’.

Table 3-2. config.toml file parameters (continued—1)

Configuration Options

[server]
o folderWatchBlacklist = []

This parameter specifies the list of folders that should not be inspected by Streamlit
for any changes.

o fileWatcherType = ‘auto’

Setting this parameter to auto will ensure Streamlit uses the watchdog module if it
is available, the watchdog will force Streamlit to use the watchdog module, the poll
forces Streamlit to use polling, and none will stop Streamlit from inspecting files.

® cookieSecret = ‘key’

This parameter specifies the key to use to produce cookies; if not set, Streamlit will
randomly assign a value.

e headless = False

(continued)

75

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-2. (continued)

Configuration Options

Setting this parameter to false will force Streamlit to start the application on a
browser window.

e runOnSave = False

Setting this parameter to true will force Streamlit to automatically run the script
upon resaving the script.

* address =

This parameter will specify the address where the server will listen for client and/or
browser connections.

* port = 8501

This parameter will specify the port where the server will listen to for browser
connections.

e baseUrlPath = ‘URL’

This parameter will specify the base path for the URL from where the Streamlit
application will be served.

* enableCORS = True

Setting this parameter to true will enable cross-origin request sharing protection.
e enableXsrfProtection = True

Setting this parameter to true will enable cross-site request forgery protection.
e maxUploadSize = 200

This parameter specifies the maximum uploadable file size in megabytes.

e maxMessageSize = 200

(continued)

76

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-2. (continued)

Configuration Options

This parameter specifies the maximum size of messages that can be sent through
the WebSocket connection.

o enableWebsocketCompression = False
Setting this parameter to true will enable support for WebSocket compression.
e enableStaticServing = False

Setting this parameter to true will enable serving files from a static directory in the
application’s directory.

e disconnectionSessionTTL = 120

Specifies the time for sessions with disconnected WebSockets, after which the
server may clean the session state and uploaded files.

e sslCertFile =
Specifies the certificate file for connecting through HTTPS.

* sslKeyFile =
Specifies the cryptographic key file for connecting through HTTPS.
[browser]

* serverAddress = ‘localhost’

This parameter specifies the URL which users should enter into their browsers to
connect to the Streamlit application; can be an IP address or DNS with path.

e gatherUsageStats = True
Setting this parameter to true will enable sending usage statistics to Streamlit.

e serverPort = 8501

This parameter sets the port at which users should point their browsers to, in order
to connect to the Streamlit application.

77

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-3. config.toml file parameters (continued—?2)

Configuration Options

[mapbox]
o foken="’

This parameter specifies the token for custom Mapbox elements; for further
information, please refer to www.mapbox. com/.

[theme]
e pase =

This parameter specifies the Streamlit theme to use with your custom theme; can
be one of ‘light’ or ‘dark’.

e primaryColor =

This parameter specifies the color HEX to use for the interactive Streamlit elements.
e backgroundColor =

This parameter specifies the color HEX to use for the main content of the Streamlit page.
e secondaryBackgroundColor =

This parameter specifies the color HEX to use for the sidebar.
e textColor =

This parameter specifies the color HEX to use for the text.
e font =

This parameter specifies the font to use for the text; can be ‘sans serif’, ‘serif’, or
‘monospace’.

[secrets]
e files =

Specifies the list of locations where secrets will be searched for. Can be a path to a
TOML file or a Kubernetes styles secret.

78

http://www.mapbox.com/

CHAPTER 3 DEVELOPING THE USER INTERFACE

Hello World

Hello World

Figure 3-4. Adding a customized footer

3.1.2. Developing Themes and Color Schemes

Streamlit allows both developers and users to customize the application's
theme and color scheme, either graphically or programmatically.

Customizing the Theme Graphically

You can choose one of the available theme appearances, Light or

Dark, from the settings menu within the hamburger menu, as shown in
Figure 3-5. Additionally, you can select colors for the following areas:
Primary color, Background color, Text color, and Secondary
background color, and choose one of the available fonts—Sans serif,
Serif, or Monospace—as shown in Figure 3-6.

79

CHAPTER 3 DEVELOPING THE USER INTERFACE

Table 3-4 provides more details about each color setting and the

Streamlit elements they affect. Please note that interactive widgets, such as

st.slider, will use the Secondary background color when placed in the

main body of the application. However, when the widget is placed in the

sidebar, it will use the Background color instead, as shown in Figure 3-7.

Table 3-4. Theme color settings

Color Parameter

Altered Elements

Primary color
Background color
Text color

Secondary background color

Interactive widgets such as st.slider.
Main body of application.
All text elements.

Sidebar background color.

Settings

Figure 3-5. Customizing the theme’s appearance from the

settings menu

80

CHAPTER 3 DEVELOPING THE USER INTERFACE

< Edit active theme

Test cnloe (3]
s

Copy thema 1o clipboand

Figure 3-6. Customizing the theme'’s colors from the settings menu

Customizing the Theme Programmatically

Alternatively, you can customize the theme's appearance and colors
programmatically by modifying the global config file /. streamlit/
config.toml, as discussed earlier in Section 1.2. To specify the theme
settings, modify the [theme] parameters, as shown in Listing 3-4. Please
note that the color convention used is color HEX. For more information
on this convention, please refer to www.w3schools.com/colors/colors
hexadecimal.asp HEXadecimal.asp.

81

http://www.w3schools.com/colors/colors_hexadecimal.asp
http://www.w3schools.com/colors/colors_hexadecimal.asp

CHAPTER 3 DEVELOPING THE USER INTERFACE

Hello World

Hetka workd el

C_ Jomos

Figure 3-7. Customized theme’s colors

Listing 3-4. config.toml

[theme]

base = "light"

primaryColor = "#7792E3"
backgroundColor = "#273346"
secondaryBackgroundColor = "#B9F1C0"
textColor = "#FFFFFF"

font = "sans serif"

Using Themes with Custom Components

If you are developing custom Streamlit components, you may need to pass
the application's theme settings to your component. Make sure you have
installed the latest version of streamlit-component-1ib by running the
following command:

npm install streamlit-component-lib

82

CHAPTER 3 DEVELOPING THE USER INTERFACE

This package will automatically update the colors of your custom
component to match the theme settings of your Streamlit application.
Additionally, it will enable you to read the theme settings in your JavaScript
and/or CSS scripts, as shown below.

The object settings can be exposed as CSS variables as follows:

--primary-color
--background-color
--secondary-background-color
--text-color

--font

Accordingly, these settings can be accessed as follows:

.mySelector {
color: var(--primary-color);

}

Alternatively, you can expose the object settings as a React]S prop,
which can be accessed as follows:

{
"primaryColor": ""
"backgroundColor": "",
"secondaryBackgroundColor": "",
"textColor": "",
“font": "",

}

3.1.3. Organizing the Page

Streamlit offers several methods to organize and customize the frontend
design of an application. As a developer, you can enable a sidebar, divide
the web page into columns, display expander boxes to hide content,

83

CHAPTER 3 DEVELOPING THE USER INTERFACE

and create containers to group multiple widgets together. When used
in combination, these features allow you to achieve a high level of
customization and provide a tailored experience for your users.

Sidebar

With Streamlit, you can elegantly subdivide your page using a sidebar
that can be expanded and contracted on demand with the st.sidebar
command. Additionally, as shown in Section 3.1, you can configure
Streamlit to keep the sidebar expanded, contracted, or automatically
adjusted at the start based on the screen size. Practically, every Streamlit
element and widget, except for st.echo and st.spinner, can be used
within the sidebar. You can even render other page organization features,
such as st.columns, st.expander, and st.container, within the sidebar,
as shown in Listing 3-5 and Figure 3-8.

Expanders

With Streamlit, you can collapse content into expanders to make more
efficient use of space in the main body or sidebar of your application.
Expanders can be expanded and contracted on demand, or set to either
state by default. Additionally, expanders can contain any element,
including columns and containers, but not nested expanders. An example
of using expanders is shown in Listing 3-5 and Figure 3-8.

Columns

Similarly, you can divide the main body and sidebar using Streamlit’s
columns feature, which can be called with the st.columns command. You
can specify the number of columns you need by writing st.columns(2), or
alternatively, use a list to set both the number and width of each column
arbitrarily, like st.columns([2, 1]). Columns can be invoked within a

84

CHAPTER 3 DEVELOPING THE USER INTERFACE

with statement and used concurrently with expanders and containers, but
they cannot be nested within one another. An example of using columns is
shown in Listing 3-5 and Figure 3-8.

Containers

If you need to bundle several widgets or elements together, you can

do so with Streamlit’s container feature, which can be called with the
st.container command in the main body or sidebar. Containers can

be invoked within a with statement and can be used with columns,
expanders, and even nested containers. They can also be altered out of
order; for instance, if you display some text outside the container and then
display more text within the container, the latter will be shown first. An
example of using containers is shown in Listing 3-5 and Figure 3-8.

Popovers

If you need to introduce a popover window in your application to render
another widget, this can be easily done so with the use of a st . popover
command in the main body or sidebar. Popovers can be invoked within awith
statement and can be rendered within columns, expanders, and containers.
The only limitation is that popovers cannot be nested within one another. An
example of using popovers is shown in Listing 3-5 and Figure 3-9.

Dialog Boxes

Similarly, if you need to display some information or render another
widget on demand in response to a user action, you may use the @
st.dialog() decorator. This decorator must precede the function that
will be used to define the dialog box and can be rendered upon invoking
that function. Please note that if you are using dialog boxes to collect
user input, such as rendering an st.selectbox widget, then you should
also include an st.button that upon press saves any entry to user made

85

CHAPTER 3 DEVELOPING THE USER INTERFACE

to st.session_state and subsequently rerun the page using an st.
rerun command. For further information please refer to Listing 3-5 and

Figure 3-10.

Listing 3-5. page_organization.py

import streamlit as st
from datetime import datetime

tab1, tab2 = st.tabs(['Tab 1', 'Tab 2'])

with tabi:

86

st.subheader(' Tab 1 ')

Expander in sidebar
st.sidebar.subheader('Expander")
with st.sidebar.expander('Time"):
time = datetime.now().strftime('%H:%M:%S")
st.write(f'**{time}**")

Columns in sidebar
st.sidebar.subheader('Columns")

col1, col2 = st.sidebar.columns(2)

with col1:
option 1 = st.selectbox('Please select option 1',
['A*, "B'])

with col2:

option 2 = st.radio('Please select option 2',
['A', 'B'])

Container in sidebar

container = st.sidebar.container()

container.subheader('Container")
option 3 = container.slider('Please select option 3')

CHAPTER 3 DEVELOPING THE USER INTERFACE

st.sidebar.warning('Elements outside of container will be
displayed externally')
container.info(f'**0Option 3:** {option 3}")

Expander in main body
st.subheader('Expander")
with st.expander('Time"'):
time = datetime.now().strftime('%H:%M:%S")
st.write(f'**{time}**")

Columns in main body
st.subheader('Columns")
col1, col2 = st.columns(2)

with col1:
option 4 = st.selectbox('Please select option 4',
['A", 'B'])

with col2:
option 5 = st.radio('Please select option 5',
['A', 'B'])

Container in main body

container = st.container()

container.subheader('Container")

option 6 = container.slider('Please select option 6')
st.warning('Elements outside of container will be displayed
externally')

container.info(f'**Option 6:** {option 6}")

with tab2:
Popover in main body
st.subheader ('Popover")
with st.popover('Popover'):
option 7 = st.radio('Please select option 7',
‘A, BT

87

CHAPTER 3 DEVELOPING THE USER INTERFACE
st.write(f'**Option 7:** {option 7}")

Dialog box in main body
st.subheader('Dialog box")
@st.dialog('Option 8")
def dialog box():
option 8 = st.selectbox('Please select option 8',
['A", 'B'])
if st.button('Submit'):
st.session state['option 8'] = option 8
st.rerun()
if 'option 8' not in st.session state:
if st.button('Dialog box'):
dialog box()
else:
st.write(f'**Option 8:** {st.session_
state['option 8']}")

Placeholders

A placeholder is one of the most versatile and powerful features offered

by Streamlit. By using the st.empty or st.sidebar.empty command, you
can reserve space at any location on the main body or sidebar of your
application. This is particularly useful for displaying content out of order
or on demand after a specific event or trigger. A placeholder can be created
by writing placeholder = st.empty(), and any widget or element can

be attached to it as needed. For example, you can attach text by writing
placeholder.info('Hello world'), and later replace the placeholder

by assigning it a different element. Finally, when no longer needed, the
placeholder can be cleared using the placeholder.empty() command.

88

http://placeholder.info

CHAPTER 3 DEVELOPING THE USER INTERFACE

Tabs

A tab, as the name suggests, allows you to organize your application into
separate containers within the same page using the st.tab command.
You can create as many tabs as needed by specifying their names, such as
tab1, tab2 = st.tabs(['Tab 1', 'Tab 2']). The tab names will appear
at the top of the page, and users can navigate freely between them. The
content for each tab can be defined using a with statement. It's important
to note that, unlike pages, Streamlit will by default invoke the logic in each
tab, but only render the tab which is selected. This means that navigating
to a page with tabs may be unexpectedly slow while Streamlit executes the
logic of each tab before the page loads. An example of using expanders is
shown in Listing 3-5 and Figure 3-8.

3.2. Displaying Dynamic Content

To display dynamic content such as a constantly updating map, chart, or
clock, you can place an element within a placeholder and invoke it within
a for loop or while loop to iterate over multiple instances of that element.
As aresult, the element will appear dynamic, with its state constantly
changing with each iteration of the loop. An example of dynamic content is
the clock application built using a placeholder, as shown in Listing 3-6 and
Figures 3-11 and 3-12. In this case, a while loop is used to continuously
update the st.info element to display the current time until a predefined
point is reached, at which point the placeholder is cleared and the while
loop ends.

Listing 3-6. placeholder.py

import streamlit as st
from datetime import datetime

st.title('Clock")

89

http://st.info
http://placeholder.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

Create an empty placeholder for time display
clock = st.empty()

Infinite loop to continuously update the time
while True:
time = datetime.now().strftime('%H:%M:%S")

Display the current time in the placeholder
clock.info(f'**Current time:** {time}")

if time > '21:19:15':
Clear the time display when the alarm condition is
met and display the alarm
clock.empty()
st.warning('Alarm!!")

break
Expander
Tab1
WSS Expander
Colus
. g o Columns
Container & w B

. Container
Optron 3: L]

Option 6: ¢

Figure 3-8. Organizing the page using Listing 3-5

90

CHAPTER 3 DEVELOPING THE USER INTERFACE

Expander
Tabi i
Time - e
Popover
Columns
Popauer ~
Planse selgctoption | Pueiie sebect optian 1 i
A ~ D&
B Piease select option T
0
Container B

Ploave select option 1
L]
a

Option 3: 0

Elemants outsice of contpiner will be
dispilayed extarnatly

Figure 3-9. Displaying a popover widget using Listing 3-5

Option 8

Phause sedect optian §

Figure 3-10. Displaying a dialog box widget using Listing 3-5

91

CHAPTER 3 DEVELOPING THE USER INTERFACE

Clock

Current time: 21:18:30

Figure 3-11. Output of Listing 3-6

Clock

Figure 3-12. Output of Listing 3-6 (continued)

3.2.1. Creating a Real-Time Progress Bar

When working with big data, it can be helpful to visualize the progress of
downloading, uploading, or performing computations that take a long time.
Users need to clearly see how much progress has been made and how much
longer they can expect to wait for the process to complete. For this purpose,
we can use Streamlit’s st.progress widget, which renders a progress bar
that shows the value provided to it, either between 1 and 100 as an integer,
or 0.0 and 1.0 as a float. For example, in Listing 3-7, we visualize the progress
of downloading a file from a URL using the requests package. If you haven't
already, install it using pip install wget. From requests, we canread the
total file size in bytes and the current amount downloaded in bytes, which
we then feed to our progress bar for visualization, as shown in Figure 3-13.

Listing 3-7. progress_bar.py

import streamlit as st
import requests

Create an empty placeholder for progress text
progress text = st.empty()

92

http://bar.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

Create a progress bar widget, initially at 0%
progress bar = st.progress(0)

def download file(url, filename):
response = requests.get(url, stream=True)
total size = int(response.headers.get('content-length’, 0))

with open(filename, "wb") as f:
downloaded = 0
for chunk in response.iter content(chunk size=8192):
if chunk:

f.write(chunk)
downloaded += len(chunk)
percent = int(downloaded * 100 / total size) if
total size else 0

Update the progress text and progress bar
progress_text.subheader(f'Progress: {percent}%")
progress_bar.progress(percent)

return filename

Download a file using requests, with the custom progress bar
download file('file url', 'output.file')

Progress: 49%

Figure 3-13. Output of Listing 3-7

3.3. Implementing Multipage Applications

Pagination and scalability are essential for any web application, and
Streamlit offers both native and non-native ways to address the need to
scale. In simple terms, the only limit to the breadth of an application in

Streamlit is the limit of one’s imagination.

93

CHAPTER 3 DEVELOPING THE USER INTERFACE

3.3.1. Creating Pages

The need to create pages within any web application is inherent, and
with Streamlit, you can natively create additional pages to organize your
content accordingly. To start, you will need one main script that defines
the pages in your application, as shown in Listing 3-8. Next, you can add
as many other pages as you need as shown in Listings 3-9 and 3-10, each
as an independent script located in the same directory or a sub-directory.
You may also add an icon to the page title to display when rendered as
shown in Listing 3-8. When you run your application, each page will be
accessible as a button that will automatically appear in the sidebar in
order, as shown in Figure 3-14.

Listing 3-8. navigation.py
import streamlit as st

pg = st.navigation([st.Page('home.py', title='ff} Home'),
st.Page('contact us.py', title='R,
Contact us')])

pg.run()

Listing 3-9. pages/1_{) _Home.py

import streamlit as st
st.title('Home")

Listing 3-10. pages/2_R, _Contact_us.py

import streamlit as st
st.title('Contact us")

94

http://page.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

& Home

St Home

Figure 3-14. Multipage Streamlit application

3.3.2. Grouping Subpages

With Streamlit, you can also group pages together in one drop down menu.
For example, we will group two pages Message and Address within the
Contact us menu. For clarity, create a folder named contact_us inside the
rootfolder and place a script for each page in it. Then, call these scripts into
your main script as a dictionary where each key is the menu name, and

the values are the associated pages. Please refer to Figure 3-15 and Listings
3-11 to 3-13 for more details.

Listing 3-11. navigation_2.py
import streamlit as st

pages = {
&) Home': [
st.Page('home.py', title="Home")
1

95

http://subpage.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

'Ra Contact us': [

st.Page('contact _us/message.py', title='Message'),
st.Page('contact_us/address.py', title='Address'),

1,
}
pg = st.navigation(pages)
pg.run()

Listing 3-12. contact_us/message.py
import streamlit as st

st.title('Message")

Listing 3-13. contact_us/address.py
import streamlit as st

st.title('Address")

96

CHAPTER 3 DEVELOPING THE USER INTERFACE

Message

Message

Figure 3-15. Multipage Streamlit application with subpages

3.3.3. Enabling Sub URL Paths

While Streamlit does not directly support sub URL paths, you can
implement the appearance of unique URL paths in your single or
multipage Streamlit application by using the st.query params command.
An example of implementing sub URL paths is shown in Listing 3-14 and
Figure 3-16.

Listing 3-14. sub_url_paths.py
import streamlit as st

Determine the current page
current page = st.query params.get('page', ['home'])

Display the correct content based on the page
if current page == "home':
st.title('Home Page')

97

CHAPTER 3 DEVELOPING THE USER INTERFACE

elif current page == 'contact':
st.title('Contact Page')

Add links to navigate between sub URLs

st.sidebar.title('Pages")

if st.sidebar.button('Home"):
st.query params['page'] = "home’
st.rerun()

if st.sidebar.button('Contact'):
st.query params['page'] = 'contact’
st.rerun()

[+
>

Pages

Home Page

Figure 3-16. Enabling sub URL paths for applications

3.4. Modularizing Application Development

In almost every web project, there is a need for visual components and code
that manage the overall experience, which is not directly seen by the end
user but is still experienced. This is often referred to as the business logic

98

CHAPTER 3 DEVELOPING THE USER INTERFACE

of the application, responsible for controlling and managing intermodule
communication, particularly when a reaction is required in response to user
actions or to initiate an action, such as prompting the user to sign in.

3.4.1. Example: Developing a Social Network
Application
For instance, a simple social network application, like the one shown in
Figure 3-17, will need components to create posts and read fields. These
two seemingly simple requirements can be broken down into three main
parts: views, action handling services, and a database connection or API
(Application Programming Interface) client for another backend service. In
this example, everything is post-centric, meaning it should be a reusable,

shared resource. A basic application like this would have an architecture
similar to the one shown in Figure 3-18.

Displayed name?

Mohammad

What is in your mind?

It can be both!

Post

Post added!

Adam: Python is a snake | 2021-05-01 00:00:00

Sara: Python is a programming language | 2021-05-03 00:00:00

Figure 3-17. Demo social network app

99

CHAPTER 3 DEVELOPING THE USER INTERFACE

APl Services
— S i
Create Post Entry Add Post Views
Communicates with the " ol Filters user input, and -
backend or database directly | 7|indicates whether a post was | [i
to add a post successfully added or not > Add Post View
. A p. vy L

e, —
Get Posts = Feed View I
Asks the backed or queries - et Fasd - L

the dalabse for posts within a Retrigves a st af posts for

specific time period tha lat day A

| —

Y

Custom Data Types / Medels

Post:
- crealon name
- text content
- time of posting

Figure 3-18. Basic social network Streamlit architecture

To build the mentioned project, a bottom-up approach should be
followed, starting with the most dependent object in the design, which
is the Post class, and building upward to the user-visible views. The
post should be a class, as shown in Listings 3-15 and 3-16, because it
encapsulates related data in one structure. In Python, we can use the
dataclasses decorator to indicate that this is a class intended to hold data.
We can also provide a default initialization function to assign values to
the declared variables. This can be seen as the Pythonic alternative to C#’s
DTOs (Data Transfer Objects).

Listing 3-15. Models/Post.py

from dataclasses import dataclass
import datetime
@dataclass(init=True)
class Post:

creator name: str

content: str

posting date: datetime.datetime

100

CHAPTER 3 DEVELOPING THE USER INTERFACE
Listing 3-16. Models/__init__.py
from .Post import Post

Next, there needs to be a data source access mechanism, whose
sole responsibility is to store and write new posts, whether directly in a
database or through an external service that can be accessed via HTTP
methods or a messaging service like Kafka, RabbitMQ, or AWS’s SQS. For
this example, we will assume that a backend service is already built,
exposing two methods: one to add posts and another to retrieve posts
between two timestamps, as shown in Listing 3-17.

Listing 3-17. APl.py

from Models import Post
import datetime
class API:
def _init (self, config=None):
self.config = config
def add post(self, post: Post):
POST HTTP request to backend to add the post
Returns true as if post has been added
return True
def get posts(self, start date: datetime.datetime, end_
data: datetime.datetime):
GET HTTP request to backend to posts within a
time period
Returns a list of posts
return [
Post(
"Adam', 'Python is a snake',
datetime.datetime(year=2021, month=5, day=1)

)5

101

http://api.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

Post(
'Sara', 'Python is a programming language',
datetime.datetime(year=2021, month=5, day=3)

)]

Once our APl is ready, we can begin building an internal service to act
as the middleware between the visual components and the API. This is
typically referred to as a Service by experienced developers.

Listing 3-18. Services/AddPost.py

from API import api_instance
from Models import Post
def add post(post: Post):
Check if the post is None or if any required fields

are empty

Returns the result of addition operation

if post is None or len(post.creator name) == 0 or len(post.
content) ==

return None
Adding the post using the API instance
did add = api_instance.add post(post)
return did add

Listing 3-19. Services/GetFeed.py

from API import api_instance
import datetime
def get feed():
Returns the posts fed to the API instance

to date = datetime.datetime.now()
from date = to _date - datetime.timedelta(days=1)

102

http://addpost.py
http://getfeed.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

posts = api instance.get posts(from date, to date)
return posts

Listing 3-20. Services/__init__.py

from .AddPost import add post
from .CetFeed import get feed

Although the application is not yet complete due to the absence of the
key components that will make it interactive for users, it can still function
as a stand-alone service for any software, as it is structured end-to-end
to serve a clear purpose of adding and retrieving posts with filtering
applied to the data. To wrap things up, we will place our Streamlit visual
components within a class-like structure for consistency with the rest of
the code base.

Additionally, instead of directly using the service function by
importing it, we can introduce the concept of dependency injection. This
pattern, widely used in strongly typed languages like C# and Java, allows
different implementations of the same function to be provided to the class
if needed, such as when creating test cases where an actual post should
be avoided. In addition to improving testability, this pattern is preferred in
many frameworks due to its readability.

Listing 3-21. FeedView.py

import streamlit as st
from Models import Post
from typing import Callable
class FeedView:
def _init (self, get feed func: Callable[[], list]):
posts = get feed func()
for post in posts:
_PostView(post)

103

http://feedview.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

class PostView:
def _init (self, post: Post):
Renders the feed from the posts
st.write(f'**{post.creator name}**: {post.content}
_{post.posting date} ")

Listing 3-22. AddPostView.py

import datetime
import streamlit as st
from Models import Post
from typing import Callable
class AddPostView:
def _init (self, add post func: Callable[[Post], bool]):
Adds the required fields to the post

user name_text = st.text input('Displayed name? ")
post text = st.text input('What is in your mind? ")
clicked = st.button('Post")
if clicked:
post = Post(
creator name=user_name_text,
content=post_text,
posting date=datetime.datetime.now()
)
did add = add post_func(post)
if did_add:
st.success('Post added! ')
else:
st.error('Error adding post')

104

http://addpostview.py

CHAPTER 3 DEVELOPING THE USER INTERFACE
Listing 3-23. main.py

import streamlit as st

from Views import FeedView, AddPostView
from Services import get feed, add post
AddPostView(add post)

st.write(' ")

FeedView(get feed)

3.4.2. Fragmenting Parts of the Application

Another useful practice that comes in handy when organizing your
Streamlit application is to fragment widgets into modular parts of code
using the @st.fragment decorator. Basically, instead of re-running the
entire script every time something changes, you can wrap parts of your
application inside a fragment. This creates an isolated container with

its own state that only re-executes when needed, making it especially
useful for applications with heavy computations or multiple independent
sections. As an example, please refer to Listing 3-24.

Listing 3-24. fragmenting.py
import streamlit as st

Define a fragment
@st.fragment
def my fragment():
name = st.text input('Enter your name')
if name:
st.write(f'Hello, {name}!")

st.write('This runs every time. ")
my fragment() # Only this part re-runs when the input changes
st.write('This also stays the same.')

105

http://main.py

CHAPTER 3 DEVELOPING THE USER INTERFACE

3.4.3. Best Practices for Folder Structuring

The example discussed in Section 3.4 can have all the files placed in the
project’s root folder. While this setup might result in a bug-free application
initially, it can lead to confusion for anyone reading or maintaining the
code as the application grows. To address this, we should structure the files
into folders and expose them as modules, making them easier to integrate
into other Python scripts in a clean and professional manner. A folder
structure like the one shown in Figure 3-19 groups similar files together.
The __init__.py scriptis included in every subfolder to export the files
within it as modules, as demonstrated in Listing 5. In the API/__init .

py script, as shown in Listing 6, we expose an instance of the class rather
than the class itself. The underscore before the class instance name is a
naming convention to indicate that this property is intended to be private
to this script. This serves as a warning to developers when trying to access
it directly, particularly in IDEs that highlight such naming patterns.

Listing 3-25. Views/__init__.py

from .AddPostView import AddPostView
from .FeedView import FeedView

Listing 3-26. API/__init__.py

from .API import API as _API
api_instance = API()

It is important to note that in Listing 3-25 and 3-26, the imports are
from a relative path to a file, not an absolute one. This is evident from the
presence of the “dot” in front of . AddPostView and . FeedView. The dot
indicates that the file being imported is located in the same folder as the
importing file, rather than searching for it in the project’s root folder.

106

CHAPTER 3 DEVELOPING THE USER INTERFACE

[~

¢
(Path/To/SocialMetwork

AddPost.py

GetFead. py

main.py

Figure 3-19. Organized folder structure for Figure 3-18

107

CHAPTER 3 DEVELOPING THE USER INTERFACE

3.5. Summary

In this chapter, we explored the various ways to design the frontend of a
Streamlit application. We covered methods for configuring color schemes
and themes, as well as organizing the page with features like columns,
expanders, sidebars, and containers, giving developers the tools to

create tailored user interfaces. Additionally, we discussed how to build
multipage and subpage applications with a modular and scalable system
architecture. Finally, we looked at ways to display dynamic content and
visualizations using Streamlit’s powerful placeholder feature. In the next
chapter, we will dive into the fundamentals of caching large datasets, data
mutation, and rendering both static and interactive data visualizations.

108

CHAPTER 4

Managing and
Visualizing Data

As with any web application, data management is an integral part of

the process. With the rise of big data, there is a growing need to develop
techniques that can handle the sheer volume of data in an efficient and
robust manner. In this chapter, we will explore some of the key methods
used to manage big data. Specifically, we will cover how to encode large
multimedia files and dataframes into bytes, allowing for more robust
storage in database systems or memory. Next, we will demonstrate the
utility of Streamlit’s built-in caching capabilities, which can be used

to cache data, function executions, and objects to significantly reduce
execution time on subsequent runs of the application. Finally, we will look
at techniques for mutating dataframes and tables within our application
on demand.

In the second part of this chapter, we will delve into the depths of
data visualization, with a special focus on the Plotly visualization library
for Python. We will provide boilerplate scripts that can be used to render
basic, statistical, time-series, geospatial, and animated data visualizations
in Streamlit.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 109
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_4

https://doi.org/10.1007/979-8-8688-1826-4_4#DOI

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.1. Data Management

The need to wrangle data is inherent in most, if not all, web applications.
While we will not dive into the depths of pre- and post-processing data
in this section, we will explore some of the most effective methods for
managing data, with a particular focus on big data.

4.1.1. Processing Bytes Data

Depending on your application, you may need to work with binary/
bytes data. For example, you might need to stream multimedia content or
store files in a database system. Fortunately, Streamlit handles much of
the overhead involved in dealing with such data. By using the st.image,
st.video, and st.audio commands, we can natively process not only
saved files on disk but also Numpy arrays, URLs, and, most importantly,
bytes data.

While structured databases will be covered in more detail in Section
5.1, it is worth noting here that almost any bytes data can be saved and
retrieved in a PostgreSQL table, provided the column data type is set to
bytea. This is especially useful when working with large objects, such as
image, video, and audio files, which need to be stored as blobs (binary
large objects). For these purposes, you will need to encode your data as
follows.

Text

String and text can simply be encoded as follows for storage:

bytes data = b'Hello world'
Or alternatively

text = "Hello world'

bytes data = text.encode()

110

CHAPTER 4 MANAGING AND VISUALIZING DATA
Subsequently, encoded string or text may be decoded as follows:
bytes data.decode()

The default encoding used in the preceding method will be UTF-8
unless otherwise specified.

Multimedia

To convert any uploaded image, video, or audio file to bytes data, simply
use the following:

uploaded file = st.file uploader('Please upload a
multimedia file')
if uploaded file is not None:

bytes data = uploaded file.read()

Then, you may render the bytes data as an image, video, or audio by
using the following commands:

Image
st.image(bytes data)
st.video(bytes_data)
Audio
st.audio(bytes data)

Dataframes

To read and display dataframes, you may use the following method:

import pandas as pd
uploaded file = st.file uploader('Please upload a CSV file',
type="csv')
if uploaded file is not None:
df = pd.read csv(uploaded file)
st.write(df)

111

CHAPTER 4 MANAGING AND VISUALIZING DATA

Alternatively, to encode dataframes (for storage as BLOB data in
databases, for example), you can use the Python module StringlO, which
stores content, such as CSV files, in memory as a file-like object, also
known as string-based I/0. These objects can then be accessed by other
functions and libraries, such as Pandas, as shown in the following:

from io import StringIO
import pandas as pd
uploaded file = st.file uploader('Please upload a CSV file',
type="csv')
if uploaded file is not None:
stringio = StringIO(uploaded file.getvalue().decode())
st.write(pd.read csv(stringio))

Please note that while you can use the preceding method to store
Pandas dataframes as string-based I/0, you cannot store the StringlO
object directly in a database. To store a Pandas dataframe, it is better to
save it as a table using the Pandas command dataframe.to_sql, which
will be covered in detail in later sections.

4.1.2. Caching Big Data

Given the sheer magnitude of data available to us, it may sometimes

be necessary to cache data in volatile storage for quicker access later.
Streamlit offers native methods to cache both data you can store in a
database and data you cannot, using the @st.cache _data and @st.cache
resource decorators, respectively. You simply write a function that returns
data or an object and precede it with the appropriate decorator to leverage
this feature. The first time you invoke the function, the returned data or
object is cached in memory. For every subsequent invocation, the return
will come from the cache, not the function itself, unless you change the

function's arguments.

112

CHAPTER 4 MANAGING AND VISUALIZING DATA

You can use Streamlit’s caching feature with Listing 4-1 to benchmark
the percentage of runtime saved by retrieving your dataframe from the
cache. As shown in Figure 4-1, there is a significant positive effect on
runtime, especially as the dataframe grows to over 100,000 rows. The
effect starts to level off at around 100,000,000 rows, with roughly 70% of
runtime saved.

Listing 4-1. cache.py

import streamlit as st
import pandas as pd
import numpy as np
import time
@st.cache data
def dataframe(rows):
df = pd.DataFrame(
np.random.randn(rows, 5),
columns=("'col %d' % i for i in range(5)))
return df
runtime = pd.DataFrame(data={'Number of rows':[10, 100,
1000, 10000, 100000, 1000000, 10000000, 100000000], 'First
runtime (s)':None, 'Second runtime (s)':None, 'Runtime saved
(%) " :None})
for i in range(0,len(runtime)):
start = time.time()
dataframe(runtime.loc[i]['Number of rows'])
stop = time.time()
runtime.loc[i, 'First runtime (s)'] = stop - start
start = time.time()
dataframe(runtime.loc[i]['Number of rows'])
stop = time.time()
runtime.loc[i, 'Second runtime (s)'] = stop - start

113

CHAPTER 4 MANAGING AND VISUALIZING DATA

runtime.loc[i, 'Runtime saved (%)'] = 100 -
int(100*(runtime.loc[i, 'Second runtime (s)']/runtime.loc[i,
"First runtime (s)']))
st.write(runtime)
80

60 &

40

Runtime saved (%)

20

1 2 3 4 5 6 7 8
Number of rows 107

Figure 4-1. Average percent runtime saved for six trials vs. number of
rows while using st.cache_data

4.1.3. Mutating Data in Real Time

You may need to mutate data, specifically dataframes, on demand within
your application. Whether it is filtering a time-series dataset based on a
given date-time range or appending data to an existing column, mutating
data is often necessary. To that end, Streamlit provides the option to
mutate data natively or by using third-party toolkits, as demonstrated in
the following sections.

114

CHAPTER 4 MANAGING AND VISUALIZING DATA

Native Data Mutation

Streamlit offers an intuitive and native method to add data to existing
tables using the st.add _rows command. With this method, you can easily
append a dataframe to a previously created table and instantly regenerate
and view any associated charts in real time, as shown in Listing 4-2

and Figures 4-2 and 4-3.

Listing 4-2. mutate_data_real_time.py

import streamlit as st
import pandas as pd
import random

def random data(n):
y = [random.randint(1, n) for value in range(n)]
return y

if _name_ == "' main_ ':
df1 = pd.DataFrame(data={"y': [1, 2]})
Create columns for table and chart
col1, col2 = st.columns([1, 3])
with col1:
Use st.dataframe for dynamic updates
table = st.dataframe(df1)

with col2:
Display the initial chart
chart = st.line chart(df1)
User input for number of rows to add
n = st.number input('Number of rows to add', o, 10, 1)
Update button
if st.button('Update'):
y = random data(n)
df2 = pd.DataFrame(data={'y': y})

115

CHAPTER 4 MANAGING AND VISUALIZING DATA

Append the new data to the existing dataframe
table.add rows(df2)
chart.add rows(df2)

Figure 4-2. Mutating data in real time using Listing 4-2

Figure 4-3. Mutating data in real time using Listing 4-2 (continued)

116

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.1.4. Advanced and Interactive Data Mutation

While Streamlit’s native method of mutating data allows you to append
rows to existing dataframes and charts, it does not provide other advanced
data manipulation methods, such as modifying individual cells, removing
data, or filtering. Fortunately, a highly versatile third-party component
called streamlit-aggrid fills this gap. Built on top of the AG Grid library for
JavaScript frameworks, streamlit-aggrid displays data in an interactive grid
widget, allowing users to manipulate data with filtering, sorting, selecting,
updating, pivoting, aggregating, querying, and many other methods. For
more information on additional features, visit waw.ag-grid.com.

To use streamlit-aggrid in your Streamlit application, you first need to
initiate the widget and configure the features you require. Then, you can
insert your Pandas dataframe using the AgGrid() command. The widget
will be rendered, and the return value, when invoked, will be provided as a
dictionary. To access the data within the widget, retrieve the data key from
the dictionary. Similarly, to access the selected rows, you must retrieve the
selected_rows key. The data will be returned as a table, while the selected
rows will be returned as a list of dictionaries.

Specifically, Listing 4-3 will enable you to perform create, read, update,
and delete operations on any provided dataset, as shown below:

e Create: To create a new record in the widget, you
can simply append an empty row to the end of the
dataframe as follows:

index = len(df)

df new['data'].loc[index,:] = 'None'

df new['data'].to_csv(path, index=False)
st.rerun()

117

http://www.ag-grid.com/

CHAPTER 4 MANAGING AND VISUALIZING DATA

e Read: You can read the data by rendering the dataframe
as a grid widget. Note that this step must be performed
before any other operation in your script, and the
widget should be invoked with a new name, different
from the original dataframe:

df = pd.read _csv(path)

df = df.fillna("'None")

index = len(df)

gb = GridOptionsBuilder.from dataframe(df)
gb.configure side bar()
gb.configure default column(groupable=True, value=True,

enableRowGroup=True, aggFunc="sum',editable=True)
gb.configure selection(selection mode='multiple', use_
checkbox=True)

gridOptions = gb.build()

df new = AgGrid(df,gridOptions=gridOptions,enable
enterprise modules=True, update mode=GridUpdateMode.
MODEL_CHANGED)

e Update: You can interactively update the value of each
individual cell in the widget and immediately save the
modified value to disk, as follows:

if not df.equals(df new['data']):
df new['data'].to csv(path, index=False)
st.rerun()

e Delete: You can also delete any row whose checkbox
has been selected in the widget, as follows:

if len(df new['selected rows']) > 0:
exclude = pd.DataFrame(df new['selected rows'])

118

CHAPTER 4 MANAGING AND VISUALIZING DATA

pd.merge(df new['data'], exclude, how='outer’,

indicator=True).query(' merge == "left only"').
drop(' merge', 1).to csv(path, index=False)
st.rerun()

In addition, you can choose to delete duplicate rows by using the
following method:

df new['data'] = df new['data'].drop duplicates()
df new['data'].to_csv(path, index=False)
st.rerun()

Please note that for our create, update, and delete operations, we are
using the st. rerun() command to automatically rerun the script after
a modification is made. This is necessary to use it to render the modified
widget without requiring further input from the user. Alternatively, you
can add a dummy button to rerun the script and update the widget when
clicked by the user, as shown below:

if st.button('Update'):
pass

119

CHAPTER 4 MANAGING AND VISUALIZING DATA

The final rendered widget can be seen in Figure 4-4.

s]

0
W0y =

Figure 4-4. Mutating data in real time using Listing 4-3

In addition to data mutation capabilities, the streamlit-aggrid widget
offers a range of filtering and aggregation options. On the right pane of
the widget, you can use the Filters tab to filter ordinal columns based on
entries and numerical columns using simple mathematical conditions, as
shown in Figure 4-5. Similarly, the Columns tab allows you to aggregate
numerical columns, as seen in Figure 4-6. Please note that both filtering
and aggregation are non-mutable features and are intended solely for
visual purposes.

120

CHAPTER 4 MANAGING AND VISUALIZING DATA

Listing 4-3. crud.py

import streamlit as st
import pandas as pd
from st_aggrid import AgGrid
from st_aggrid.shared import GridUpdateMode
from st _aggrid.grid options builder import GridOptionsBuilder
def crud(path):
df = pd.read csv(path)
df = df.fillna('None")
index = len(df)
Initiate the streamlit-agqrid widget
gb = GridOptionsBuilder.from dataframe(df)
gb.configure side bar()
gb.configure default column(groupable=True, value=True,
enableRowGroup=True, aggFunc="sum',editable=True)
gb.configure selection(selection mode="multiple', use_
checkbox=True)
gridOptions = gb.build()
Insert the dataframe into the widget
df new = AgGrid(df,gridOptions=gridOptions,enable
enterprise modules=True, update mode=GridUpdateMode.MODEL
CHANGED)
Add a new row to the widget

if st.button('----------- Add a new row----------- "):
df new['data'].loc[index,:] = 'None'
df new['data'].to csv(path, index=False)
st.rerun()

Save the dataframe to disk if the widget has been

modified

if df.equals(df new['data']) is False:
df new['data'].to csv(path, index=False)

121

CHAPTER 4 MANAGING AND VISUALIZING DATA

st.rerun()
Remove selected rows from the widget
if st.button('----------- Remove selected rows----------- OF

if len(df new['selected rows']) > 0:
exclude = pd.DataFrame(df new['selected rows'])
pd.merge(df new['data'], exclude, how='outer',
indicator=True).query(' merge == "left only"').
drop(' _merge', 1).to _csv(path, index=False)
st.rerun()
else:
st.warning('Please select at least one row')
Check for duplicate rows
if df new['data'].duplicated().sum() > oO:
st.warning(f'**Number of duplicate rows:** { df_
new['data'].duplicated().sum()}")
if st.button('----------- Delete duplicates----------- "):
df new['data'] = df new['data'].drop duplicates()
df new['data'].to_csv(path, index=False)
st.rerun()
if _name__ == "' main_ ':
st.title('Data')
crud('data.csv')

122

CHAPTER 4 MANAGING AND VISUALIZING DATA

Jokn Smuth 23-Jan-92 U23423a1 9
Sarah Watiins 07-Sep-98 U25155432
Joseph Baldwn 26-Dec-T76 U56436343 0

Add a new row

—---Remove selected rows

Figure 4-5. Filtering data with the streamlit-aggrid widget

@) pivet Mode

Row Groups

Values

sum{Score)

2 Column Labels

~----Add a new row--—--——

------ Remove selected rows -«

Figure 4-6. Aggregating data with the streamlit-aggrid widget

ey 4

W g

SO)

123

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.2. Exploring Plotly Data Visualizations

There is a plethora of data visualization libraries in Python, many of
which can be rendered easily in Streamlit. Whether you use a more native
command such as st.vega_lite chart or resort to the Swiss Army knife
command, st.write, you have at your disposal the ability to visualize
data extensively. Among the many visualization libraries, one stands

out the most: Plotly. Arguably one of the most versatile, interactive, and
visually appealing visualization stacks available, Plotly offers a wealth

of possibilities. In this section, we will showcase some of the most
relevant types of charts for web development. However, the following
list is by no means exhaustive. For a complete list of charts, please refer
to Plotly's official documentation at https://plotly.com/python/ for a
complete list.

4.2.1. Rendering Plotly in Streamlit

As explained in Section 4.2, Streamlit offers two native options to display
Plotly and other types of charts. Specifically, you can use the st.write
command, often referred to as the Swiss Army knife of commands, to
render the chart by simply writing the Plotly chart object (hereafter
referred to as fig), as follows:

st.write(fig)

Alternatively, you can use the st.plotly chart command, which
offers greater functionality when rendering Plotly charts:

st.plotly chart(fig, use_container width=True)

You can use the st.plotly chart command with the additional
use_container width argument to specify whether the chart width
should be restricted to the encapsulating column width.

124

https://plotly.com/python/

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.2.2. Basic Charts

In this section, we will cover Plotly line, scatter, bar, and pie charts. Before
proceeding, we will first import all the necessary libraries for this section,
as listed below:

import streamlit as st

import numpy as np

import pandas as pd

import plotly.express as px
import plotly.graph objects as go

For consistency, we will use the same randomly generated Pandas
dataframe (shown below) as our dataset to generate each of the charts:

data = np.random.randint(0, 10, size=(40,2))
df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])

Line Chart

fig = go.Figure()

fig.add trace(go.Scatter(x=df.index, y=df['Column 1'],
mode="lines",
name="Column 1'))

fig.add trace(go.Scatter(x=df.index, y=df['Column 2'],
mode="lines",
name="Column 2'))

125

CHAPTER 4 MANAGING AND VISUALIZING DATA

AN
V \/\/ \V’Vﬂ |V

Scatter Chart

fig = go.Figure(data=go.Scatter(
y = df['Column 1'],
mode="markers"',
marker=dict(
size=10,
color=df['Column 2'], # Set color equal to a variable
colorscale='Viridis', # Select colorscale

showscale=True

))

126

Bar Chart

fig = go.Figure(data=[

CHAPTER 4 MANAGING AND VISUALIZING DATA

go.Bar(name="Column 1', x=df.index, y=df['Column 1']),
go.Bar(name="Column 2', x=df.index, y=df['Column 2'])

)]

Pie Chart

fig = px.pie(df, values=df.sum(), names=df.columns)

B column1
Column 2

127

CHAPTER 4 MANAGING AND VISUALIZING DATA

Chart Layout

To update the properties and layout of the chart, you can use the update
layout method, as shown below:

fig = go.Figure(data=[
go.Bar(name="Column 1', x=df.index, y=df['Column 1']),
go.Bar(name="Column 2', x=df.index, y=df['Column 2'])
1)
fig.update layout(
title="Column 1 vs. Index',
xaxis_title='Index',
yaxis title='Value',
legend title="Columns',
font=dict(
family="Arial',
size=10,
color="black'

Column 1 vs. Index

B Column

GColumn 2

128

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.2.3. Statistical Charts

In this section, we will generate a Plotly histogram and box plot. The
following randomly generated dataframe will be used for both charts:

data = np.random.randn(40, 2)
df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])

Histogram

fig = go.Figure()

fig.add trace(go.Histogram(name='Column 1", x=df['Column 1']))
fig.add trace(go.Histogram(name='Column 2', x=df['Column 2']))
fig.update layout(barmode='overlay")

fig.update traces(opacity=0.75)

M column

Box Plot

fig = go.Figure()
fig.add trace(go.Box(
y=df['Column 1'],
name='Column 1°',
boxmean="'sd' # Display mean, median and standard deviation

)
fig.add trace(go.Box(

129

CHAPTER 4 MANAGING AND VISUALIZING DATA

y=df['Column 2'],
name="Column 2',
boxmean="sd"' # Display mean, median and standard deviation

))

4.2.4. Time-Series Charts

Time-series charts can be generated using the same line chart function
from Section 4.2; the only difference is that the index provided must be in
a date-time format. You can use the following function to create a Pandas
dataframe with randomly generated values, indexed between a specified
range of dates:

data = np.random.randn(40, 2)

df = pd.DataFrame(data, columns=['Column 1', 'Column 2'])
df.index = pd.date range(start='1/1/2018"', end='2/9/2018",
freq="D")

Then, the line chart function can be invoked as follows:

fig = px.line(df, x=df.index, y=df.columns)

130

CHAPTER 4 MANAGING AND VISUALIZING DATA

=

k\/[\/\ fv \f\/\/\\ﬁ adl)

4.2.5. Geospatial Charts

Depending on your application, you may need to render interactive maps
with geospatial data. Fortunately, Plotly offers geospatial charts with a
wide range of features and attributes. In this section, we will focus on one
such chart, the choropleth map, using a dataset of world GDP per capita
from 1990 to 2023 [22]:

df = pd.read csv('gdp-per-capita-worldbank.csv').sort

values(by="Year', ascending=False)

fig = px.choropleth(df, locations=df['Code'],
color=df['GDP per capita, PPP (constant 2021
international $)'],
hover name=df['Entity'])

131

CHAPTER 4 MANAGING AND VISUALIZING DATA

4.2.6. Animated Visualizations

With Plotly, you can incorporate simple animations into your charts. This
is especially useful when displaying time-varying values in a time-series
dataset. However, you are not limited to time-series data and can animate
other types of numeric data as well. In this section, we will animate the
same dataset of world GDP per capita from 1990 to 2023 [22], using both
an animated bubble map and a bar chart, as shown below.

Animated Bubble Map

df = pd.read csv('gdp-per-capita-worldbank.csv').sort
values(by=['Year', 'Entity'])
fig = px.scatter geo(df, locations=df['Code'],
color=df['GDP per capita, PPP (constant 2017
international $)'],
hover name=df['Entity'],
size=df['GDP per capita, PPP (constant 2017
international $)'],
animation frame=df['Year'])

My
L
ahy

132

CHAPTER 4 MANAGING AND VISUALIZING DATA

Animated Bar Chart

df = pd.read csv('gdp-per-capita-worldbank.csv').sort
values(by=['Year', 'Entity'])
df = df[df['GDP per capita, PPP (constant 2021 international
$)'] > 50000]
fig = px.bar(df, x=df['Entity'],

y=df['GDP per capita, PPP (constant 2021

international $)'],

animation frame=df['Year'])

4.3. Summary

In this chapter, we explored several techniques for managing big data.
Specifically, we learned how to encode multimedia files and dataframes
into byte data, enabling the robust storage of large quantities of data in
databases or memory. We also saw how Streamlit’s caching functions

can significantly reduce execution time when our application is rerun.
Additionally, we covered both a native technique and a third-party toolkit

133

CHAPTER 4 MANAGING AND VISUALIZING DATA

for mutating dataframes and tables within our application. In the latter
part of this chapter, we gained the knowledge to generate various types of
charts, including basic, statistical, time-series, geospatial, and animated
charts in Streamlit, using the Plotly data visualization library. By the end of
this chapter, we should have developed the ability to manage and visualize
data at varying scales efficiently and robustly within our web application.

134

CHAPTER 5

Integrating Databases

Before we begin utilizing application data and user interaction insights,
we must first understand how to store and manage data of varying
schemas persistently using robust and distributed database systems in
an organized manner. This chapter will focus on two types of database
systems: relational and nonrelational. We will demonstrate use cases
for each by interfacing with PostgreSQL and MongoDB. Additionally,
advanced features such as fuzzy matching and full-text indexing will be
introduced, with boilerplate code provided as building blocks for your
own applications. Finally, you will learn how to seamlessly integrate
these databases with Streamlit to visualize data and perform create, read,
update, and delete (CRUD) operations. For full comprehension of this
chapter, the installation of PostgreSQL and pgAdmin is required.

5.1. Relational Databases

Since most apps built with Streamlit manipulate data in one way or
another, that data often needs to be stored on disk for later use. In many
cases, the data follows a specific format—i.e., it is structured. We can
leverage this characteristic by using a SQL database to store it. PostgreSQL
will be the tool of choice for demonstrating this use case, as it is both free
and open source.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 135
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_5

https://doi.org/10.1007/979-8-8688-1826-4_5#DOI

CHAPTER 5 INTEGRATING DATABASES

5.1.1. Introduction to SQL

Structured Query Language (SQL) is used to perform CRUD operations on
data with a similar structure. Same structure data refers to different entries
(rows) that share the same features (columns). An example of a relational
SQL database is a company directory containing employee data, split into
two separate tables: one for employees’ personal information and another
for their pay grades. Both types of data can be represented as tables in

the database, as shown in Tables 5-1 and 5-2, where a one-to-one linkage
between the tables indicates that every employee has a corresponding
pay grade.

A one-to-one relationship exists when every row in one table
corresponds to a unique ID in another table, extending the information of
the first table with data from the second.

There are additional types of relationships between tables, such as
one-to-many and many-to-many, but we will not cover them here, as they
do not add further value to the purpose of this book. However, for the sake
of real-world scenario demonstration, we will proceed with one-to-one
relationships in some of the examples.

CRUD, which stands for Create, Read, Update, and Delete, refers to
the main operations that can be performed within a database using SQL
commands, as follows:

e Create: To make a new person entry with pay grade 3

INSERT INTO Persons VALUES ("Charlie",
"01/01/1995", 3);

e Read: To retrieve all pay grade data with a base salary
level equal to L3

SELECT * FROM INTO PayGradelevels WHERE
BaseSalary = "L3";

136

CHAPTER 5 INTEGRATING DATABASES

e Update: To update the pay grade of Bob to pay grade 2
UPDATE Persons SET PayGradeId = 2 WHERE ID = 3;

e Delete: To remove pay grade 4 from existence

DELETE FROM PayGradelLevels WHERE id = 4;

Table 5-1. Persons table

ID Name DOB Pay Grade ID
1 Adam 01/01/1990 2
2 Sara 01/01/1980 1
3 Bob 01/01/1970 1
4 Alice 01/01/2000 3

Table 5-2. Pay grade levels table

ID Base Salary Reimbursements Bonuses
1 L3 L2 LO
2 L1 L1 L1
3 L3 L3 L3
4 L1 L3 L1

One of the most important concepts to understand when building a
database is the primary key. This refers to the ID in both Tables 5-1 and
5-2. A primary key is a unique, always valid (i.e., not null) identifier used
to refer to a single row in a table. It is also indexed, meaning it is internally
managed by the database in a way that significantly speeds up query
performance when filtering by this ID.

137

CHAPTER 5 INTEGRATING DATABASES

It is worth noting that indexing is a feature that can be applied to
any column—not just primary keys—but it is generally used with care.
Indexing a column can increase its storage footprint to as much as twice
its original size. However, indexing is highly beneficial when used on
columns that are frequently searched, especially those representing IDs, as
it enables faster data retrieval.

Another key term that backend developers often encounter is the
foreign key. A foreign key is an ID that refers to a row in a different table.
For example, the Pay Grade ID column in Table 5-1 acts as a foreign key
pointing to the ID column in Table 5-2.

5.1.2. Connecting a PostgreSQL Database
to Streamlit

First, we need to create the database and the tables described in Section
5.1 using pgAdmin 4, a graphical user interface (GUI) tool for managing
PostgreSQL databases. Assuming pgAdmin 4 is already installed and
configured on your system, we can proceed to create a new database by
following the steps illustrated in Figures 5-1 and 5-2 sequentially.

[E)Admin Filev Objectv Toolsv Helpv

Browser S E w Q Dashboard Properties SQl

v = Servers (1)
v (¥ PostgresaL 12
> "_'D;t:-haeac M I

¥ Te

Refresh...

Figure 5-1. Creating a new PostgreSQL database

138

CHAPTER 5 INTEGRATING DATABASES

= Create - Database x

General Definition Security Parameters Advanced SOL

Database CompanyData
Owner B, postgres
Comment
i ? X Cancel £3 Reset B save

Figure 5-2. Creating a new PostgreSQL database (continued)

Once the database is ready, click the Query Tool in the top-left corner
to run raw SQL commands. As shown in Figure 5-3, we will create two
tables—each with a primary key, and one containing a foreign key. Some
additional features of the columns—commonly referred to as constraints
in database terminology—include setting columns as NOT NULL and
enabling auto-incrementation.

Setting a column as NOT NULL instructs the database to reject any
INSERT or UPDATE operation where that column is either missing or
explicitly set to NULL. PostgreSQL provides a special data type called
SERIAL, which automatically ensures the column is not null and enables

auto-incrementation of its integer value for each new row inserted.

139

CHAPTER 5 INTEGRATING DATABASES

EAdmin Filev Objectv Toolsv Helpv

Browser S| E ™ Q| Dashboard Properties SQL Statistics Dependencies Dependents §
v g Bavers (1) gl alvallajv|Bv e F @YY |~ N

+ ¥ PostgresaL 12

v = Databases (11) B B av X|Bv
v = CompanyData Query Editor Query History
> o CREATE TABLE Paygrades
> W Catalogs id SERIAL,

» I, Event Triggers
») Extensions

1
74
3 base_salary varchar(255) NOT NULL,
4 reimbursement varchar(255),
> =/Foreign Data Wrappers g bonuses varchar(255),
» Silanguages 6 PRIMARY KEY (id)
» (¢ Publications 7
v 49 schemas (1) 8

~ & public g
» Al collations

[

@ CREATE TABLE Persons

> & Domains 11 id SERIAL,

3y 'ng'rgcgnﬁguraﬁp 12 name varchar(255) NOT NULL,

> [l FTS Dictionaries 13 date_of_birth varchar(255) NOT NULL,
» AaFTS Parsers 14 paygrade_id int not NULL,

> [EFTS Templates 15 PRIMARY KEY (id),

> [Foreign Tables 16 FOREIGN KEY (paygrade_id) REFERENCES Paygrades(id)
» () Functions 22 43

> [Materialized Viev

» () Procedures Data Output Explain Messages Notifications

¥ 2 Saq0eces CREATE TABLE

~ [FTables (2)

» [Epaygrades Query returned successfully in 93 msec.
» Epersons

¥ Trigger Functions

> Types

w

> Views

» »:Subscriptions

Figure 5-3. Running SQL commands from create_tables.sql to create
the database tables

Before proceeding with the Streamlit integration, we will first insert
some data into the database using raw SQL, as demonstrated in Figure 5-4.
Notice that we did not need to manually set the ID values for either table—
these are automatically generated by the database thanks to the SERIAL
data type.

140

CHAPTER 5 INTEGRATING DATABASES

Next, we need to configure our database access credentials for
use within Streamlit. These credentials—including the username and
password—can be stored securely in various ways:

e Asenvironment variables in a .env file
e Inasecrets.yaml file (read and parsed by the app)

¢ Recommended: In a secrets.toml file located inside a
.streamlit folder, as shown in Listing 5-1.

This secrets.toml file is automatically parsed by Streamlit, making the
variables inside easily accessible to your application. For consistency and
proper parsing, the database connection details should be grouped under
alabel like [db_postgres], which can then be referenced in your code.

ASecurity Tip Always use strong passwords, especially if your
database is publicly accessible. Weak passwords are susceptible to
brute-force attacks, potentially exposing sensitive data.

Listing 5-1. .streamlit/secrets.toml

[db_postgres]

host = "127.0.0.1"
pOIt — ||5432n
user = "postgres"

password = "82geD\t_K7n~" 7A&"
dbname = "CompanyData"

141

CHAPTER 5 INTEGRATING DATABASES

Query Editor Query History

1 INSERT INTO paygrades(base_salary, reimbursement, bonuses) VALUES ('L3', 'L2', 'L@');
2 INSERT INTO paygrades(base_salary, reimbursement, bonuses) VALUES ('Li', 'L1', 'L1'};
3 INSERT INTO paygrades(base_salary, reimbursement, bonuses) VALUES ('L3', 'L3", 'L3'
4 INSERT INTO paygrades(base_salary, reimbursement, bonuses) VALUES ('L1', 'L3", 'L1'});
5

6 INSERT INTO persons(name, date_of_birth, paygrade_id) VALUES

7 INSERT INTO persons{name, date_of_birth, paygrade_id) VALUES

8 INSERT INTO persons(name, date_of_birth, paygrade_id) VALUES

9 INSERT INTO persons(name, date_of_birth, paygrade_id) VALUES

Data Output Explain Mes Notifications
INSERT @ 1
Query returned successfully in 55 msec.

Figure 5-4. Inserting data using inserting _data.sql into the database

To interface Python with PostgreSQL, we need to use a capable library,
such as psycopg3. While psycopg3 is a great choice for this example, other
libraries like SQLAIchemy can also accomplish the same task, and we will
cover that in later chapters.

As mentioned in previous chapters, Streamlit automatically reruns the
Python script whenever the user interacts with the app. This is not usually
a concern, but in this case, it could lead to inefficiencies. For example,
every time the app reruns, a new database connection will be established.
To prevent this unnecessary overhead, we can cache the first established
connection. Streamlit provides an easy way to do this using its native @
st.cache _resource decorator. This decorator can accept additional
parameters, such as an expiration date for the cache. If the cache expires,
the function will re-execute when called again. In Listing 5-2, line 5
demonstrates how to save the established connection in the cache.

Once a connection is established, we will need a cursor to execute SQL
queries. It is important to properly dispose of the cursor after the query is
executed to avoid memory issues. If the cursor is not closed, it will remain

in memory, and as more queries are executed, this can lead to memory

142

CHAPTER 5 INTEGRATING DATABASES

leaks—a nightmare for any developer. There are two ways to manage
the cursor: manually closing it or using a context manager. The context
manager will automatically close the cursor once its scope is exited. In
Listing 5-2, lines 14 and 22 show examples of both methods, with their
outputs illustrated in Figure 5-5.

Listing 5-2. main.py

import streamlit as st
import psycopg2
@st.cache_resource
def init connection():
return psycopg2.connect(**st.secrets['db postrgres'])
conn = init connection()
def run_query(query str):
cur = conn.cursor()
cur.execute(query str)
data = cur.fetchall()
cur.close()
return data
def run_query with context manager(query str):
with conn.cursor() as cur:
cur.execute(query str)
return cur.fetchall()
query = st.text input('Query")

c1l, c2 = st.columns(2)
output = None
with c1:

if st.button('Run with context manager'):
output = run_query with context manager(query)

143

http://main.py

CHAPTER 5 INTEGRATING DATABASES

with c2:
if st.button('Run without context manager'):
output = run_query(query)
st.write(output)

5.1.3. Displaying Tables in Streamlit

After querying data from the database, we can display it in plain text or use
more visually engaging tools from Streamlit, which may require modifying
how the data is represented.

In the data science and development communities, it is common
to parse structured data, whether it is sensor readings, identification
information, or any repeating data organized into a structured format,
such as a Pandas dataframe. Dataframes are essentially Numpy arrays with
additional functionality, including column names and SQL-like querying
capabilities. Furthermore, they share the same efficient vectorization
features as Numpy arrays, enabling parallelized mathematical
computations on entire arrays rather than on individual elements.

Streamlit offers two ways to display dataframes. The first is with st.
table, which provides a non-interactive representation of the dataframe,
as shown in Figure 5-6. The second option is st.dataframe, which renders
an interactive version of the dataframe. In this interactive format, users
can sort any column by simply clicking its header, as demonstrated in
Figure 5-7. However, there is a trade-off: this interactive functionality
requires additional CPU and memory resources, which can slow down
the application. The sorting operation, for instance, has a time complexity
of O(n*log(n)), meaning that as the dataset grows, the application may

experience performance degradation.

144

CHAPTER 5 INTEGRATING DATABASES
Listing 5-3. df _demo.py

import streamlit as st
import pandas as pd
df = pd.DataFrame([['Adam', '01/01/1990', 2],
['Sara', '01/01/1980', 1],
['Bob', '01/01/1970', 1],
['Alice', '01/01/2000', 3]
], columns=['Name', 'DOB', 'Paygrade ID'])
st.table(df)
st.dataframe(df)

Figure 5-5. Running user SQL commands from Streamlit

Adam 01/01/1990 !
Sara 01/01/1980 1
Bob 01/01/1970 1
Alice 01/01/2000 3

Figure 5-6. st.table from Listing 5-3

145

http://demo.py

CHAPTER 5 INTEGRATING DATABASES

Adam 01/01/1990 2
Sara 01/01/1980 1
Bob 01/01/1970 1

Alice 01/01/2000

w

Figure 5-7. st.dataframe from Listing 5-3

5.2. Nonrelational Databases

While in most use cases you will be working with a structured dataset,
where the schema, attributes, data types, and metadata are known
beforehand, there are instances where this information is not available.
For example, consider building a search engine where users can upload
documents of varying lengths, with different numbers of headers, images,
and types of media. In such cases, it is nearly impossible to define a fixed
schema or table structure to accommodate the data. This is where the
utility of a NoSQL database, like MongoDB, becomes crucial. NoSQL
databases are designed to handle and store unstructured or semi-
structured data, offering flexibility in how the data is stored and queried.

5.2.1. Introduction to MongoDB

MongoDB allows you to store data as JSON documents, which can have
varying attributes and data types, all within a collection that can have

a dynamic schema. In this context, a document is similar to a row in a
relational database, and a collection is analogous to a table. Even if your
dataset starts off structured, using a NoSQL database like MongoDB can
be beneficial as your application scales, especially when you begin to deal

146

CHAPTER 5 INTEGRATING DATABASES

with unstructured data. Moreover, if you need advanced features such as
full-text indexing (which indexes every word in every document within
a collection) or fuzzy matching (which helps mitigate typos in queries),
MongoDB is an ideal choice.

In this section, we will explore MongoDB's capabilities and
demonstrate how it can be integrated with Streamlit by building a search
engine for restaurants using a publicly available unstructured dataset of
restaurant ratings. The goal of the application is to allow users to search
for restaurants based on the type of cuisine and address. For the cuisine,
we will use a simple one-to-one match with a predefined list of cuisine
types to filter the data. For the address, full-text indexing will be necessary
to match n-grams (continuous sequences of words or tokens) in borough
and street address fields, which may be stored in different objects or arrays
within the document, as shown in Figure 5-8. Additionally, fuzzy matching
will be implemented to ensure that search queries with minor typos (at
most two characters different) are still matched correctly with the relevant
records.

5.2.2. Provisioning a Cloud Database

MongoDB can be set up both locally and in the cloud. However, to take
advantage of the full-text indexing feature provided by MongoDB's Atlas
Search service, you must host your database on the cloud. Below are the
steps to do so:

1. Begin by setting up an account and project at www.
mongodb. com/atlas/database.

2. Provision the free M0 Sandbox cluster, as shown in
Figures 5-9 and 5-10. If needed, modify the hosted
region to minimize latency between your database
and server.

147

http://www.mongodb.com/atlas/database
http://www.mongodb.com/atlas/database

CHAPTER 5 INTEGRATING DATABASES

3. After provisioning the cluster, whitelist the IP
addresses that will access the database in the
Network Access menu. While not recommended, you
can whitelist all addresses (as shown in Figure 5-11)
to allow access from anywhere.

4. Next, create user credentials for database access
from the Overview tab in the Databases menu, as
shown in Figure 5-12.

_id: object1d("seb3dessb21desdsssfa292a")
v address: Object
building: “278e"
v coord: Array

street: "stillwell Avenue"
IlpCOdE’“l 224"
borough: ' 3 00 =
cuisine: "American”
v grades: Array
~ 9: 0bject
date: 2014-06-12720:22:00.000+00:00
grade: "A"
score: S
v 1: Object
date: 2013-06-25720:22:20.000+20:00
grade: "A"
score: 7
~ 2: Object
date: 2012-04-13T22:22:20.000+00:00
grade: "A"
score: 12
v 3: Object
date: 2011-10-12T22:22:20.000+00:00
grade: "A"
score: 12
name: "Riviera cCaterer”
restaurant_id: "40356018"

Figure 5-8. A sample document from the restaurants dataset

148

CHAPTER 5 INTEGRATING DATABASES

‘ Bn TestAceoumt + 3 AcomaMonoger v Biling Al Chatern GetHolp = Mahammad =
= Test Project . i Atias App Sorvices Charts LS i

& DEpLoYMENT TEST ACCOUNT » TEST PROJECT

Datobase Database Deployments

Data Loke PREVIEW

[0 DATA SERVICES

Data AP} g £

Data Federotion

8 secumTy Create a database
Database Access Choose your cloud provider, region, and specs.

MNatwork Access

Advanced Build o Database

v O Atics Once vour database & up ord ru;

into Atian with o

Figure 5-9. Setting up a MongoDB database

5. Next, create a connection string by selecting the
Connect your application option in the Choose a
connection method tab. Then, choose the Python
driver that best suits your application, as shown in
Figures 5-13 and 5-14.

‘ Mohammad -

CLUSTERS »

Create a Shared Cluster

o Mong: Atlost we've soma of our most popular opticns, but feel free to customize your cluster
o your needs. For more information, check eur docurnentation.

Serveriess Dedicated [FREE Shared J

-

For learning ond expl in o sandbox . Basic canfi jon controls.

o full funceionaity,

™ Cloud Provider & Region AWS, N. Virginia (us-east-1]

B e eyt ek i o Bagh Create Cluster

Figure 5-10. Provisioning a free M0 Sandbox cluster

149

CHAPTER 5 INTEGRATING DATABASES

Add IP Access List Entry

Atlas only allows client connections to a cluster from entries in the project’s IP Access List. Each
entry should either be a single IP address or a CIDR-notated range of addresses. Learn more.

ADD CURRENT IPADDRESS || ALLOW ACCESS FROM ANYWHERE
Access List Entry: 0.0.0.0/0

Comment:

This entry is temporary and will be deletedin = 1week ¥ Canecel m

Figure 5-11. Configuring network access to the database

6. Finally, you can either upload your own dataset or
load a sample dataset provided by MongoDB in the
Collections tab under the Databases menu, as shown
in Figure 5-15. For this example, we will use the
sample restaurants collection from MongoDB’s own
datasets.

150

CHAPTER 5 INTEGRATING DATABASES

Connect to TestCluster

Setup connection security Choose a connection method Connect
You need to secure your MongoDB Atles cluster before you can use it. Set which users and IP addresses can
access your cluster now. Read more (2

1. Add a connection IP address

~ An IP address has been added to the IP Access List, Add another oddress in the 1P 4

2. Create a database user

This first user will have atlasAdmin (' permissions for this project.

Keep your credentials handy, you'll need them for the next step.
Username

test_username

Password

test_password &, Autogenerate Secure Password @ Copy
Create Database User

Figure 5-12. Creating user credentials for the database

5.2.3. Full-Text Indexing

Full-text indexing indexes every token in all objects across all documents
in a database. It is a highly powerful form of indexing that enables accurate
queries and the retrieval of all matching documents, much like how search
engines function. In MongoDB, you can create a full-text index on a cloud
database with the following steps:

1. Open the Search tab located in the Databases
menu and click Create Search Index, as shown in
Figure 5-16.

151

CHAPTER 5 INTEGRATING DATABASES

2. Next, select JSON Editor from the Configuration
Method tab.

3. Choose the database and collection you want to
create the index for, name the index, and enter
the following index configuration, as shown in
Figure 5-17:

{
"mappings": {
"dynamic": true

Connect to TestCluster

v Setup connection security Choose a connection method Connect

Choose a connection method View documentation (£

Get your pre-formatted connection string by selecting your tool below.

o Connect with the MongoDB Shell &

Interact with your cluster using MongoDB's interactive Javascript interface 4

0 Connect your application N
] Connect your application to your cluster using MongoDB's native drivers 4

i Connect using MongoDB Compass
H Explore, modify, and visualize your data with MongoDB's GUI

Go Back Clese

Figure 5-13. Creating a connection string for the database

152

CHAPTER 5 INTEGRATING DATABASES

5.2.4. Querying the Database

To query your indexed database in MongoDB, you should first connect

to your database using the connection string obtained in Figure 5-13.
This string will help you establish a client connection. To optimize
performance, it is recommended to invoke the client as a function and
cache it using the @st.cache_resource decorator. By doing so, Streamlit
will reuse the cached client on subsequent queries instead of establishing
a new client each time, which helps save runtime and resources. The
following example demonstrates this approach:

from pymongo import MongoClient
@st.cache_resource
def create client():

return MongoClient('<connection string>")

Next, you will need to create an Aggregation, which is essentially a
multi-stage filtering pipeline written in JSON format. This pipeline allows
you to apply various filters and transformations to your data before
querying it. The structure of the aggregation will depend on the filters and
operations you want to perform, and it can be used to shape your query
results accordingly, as shown in the following example:

1. Search using fuzzy matching

At this stage, we need to specify the name of the
index that we created previously for searching the
documents. Additionally, we need to input the
user’s query with string concatenation. We must also
specify the path, or in other words, the objects to
search through in the documents, such as borough
and street address (nested elements and/or objects
can be accessed with a period, i.e., address.street).
Most importantly, we need to enable fuzzy matching

153

CHAPTER 5 INTEGRATING DATABASES

and specify the number of single-character edits
needed to match the query with the token using
maxEdits, and we also need to determine the
number of characters at the start of each query that
must match the token using prefixLength.

"$search": {
"index": "default",
"text": {
"query": f"{address}",
"path": ["borough", "address.street"],
"fuzzy": {
"maxEdits": 2,
"prefixLength": 2

154

CHAPTER 5 INTEGRATING DATABASES

Connect to TestCluster

v Setup connection security + Choose a connection method Connect

o Select your driver and version

DRIVER VERSION

Python 4 3.6 or later b

o Add your connection string into your application code

Include full driver code sxample

client = pymongo.MongoClient("mongodb+srv://test_username:

L]
<password>@testcluster.cpitsSo.mongodb.net/?retryWrites=truelw=majority")
db = client.test
Reploce <password> with the password for the test_username user. Ensure any option params are URL encoded.
Having trouble connecting? View our troubleshooting documentation
Go Back Close

Figure 5-14. Creating a connection string for the database
(continued)

2. Project documents with search score

At this stage, we will pass only the objects we want
from the documents and compute the relevance
score using the searchScore tag:

"$project": {
"Name": "$name",
"Cuisine": "$cuisine",

155

CHAPTER 5

"Address":
"Borough"
"Grade": "
"Score": {

"$meta

.
.

o 83 TestAccount =~ O

Agcsss Manager »

B Test Project Atlos
= DEPLOYMENT

Database

TestClus

DaotaLoke PREVIEW

El DATASERVICES

Triggers

Doto APY

Data Federation
8 secumiTy
Database Access
Network Access

Advanced

Figure 5-15. Loadinga

156

App Services

INTEGRATING DATABASES

"$address.street”,
"$borough”,
$grades.grade”,

": "searchScore"

gilling All Clusten Get Help =

Charts

TEST ACCOUNT > TEST PROJECT » DATABASES

ter 509

Collections

i VISUALIZE YOLR DATA

Add data to your Collections

it | Indexes: iebid and monoge indaxes
iines | Search: bulld search Indexes
o

Find: run queries ond
Aggregotion: test aggre:

intaroct w

Add My First Dataset

dataset into the database

Mohommod «

&

3 REFRESH

AWS N. Virginia us-east-1)

CHAPTER 5 INTEGRATING DATABASES

‘ R TestAccount = @ Access Manager v Billing All Clustens Gat Help ~ Mohammad =
B Test Project « i Atlos App Services Charts & 7 A
Search
s DEPLOYMENT
| botabase
OataLoke PREVIEW Make your data more discoverable with Atlas Search
El DATA SERVICES Create search indexes aond use MongoDB cggregotion prpeline to get relevant results.
Data AP =8y (a0 |-x=
| T/ |=(7
Dato Faderation = | o (:2
A secumTyY Autocomplete Rich Guery DSL Custom Scoring

Figure 5-16. Creating a full-text index for the database

3. Filter documents

Subsequently, we will filter the passed documents
based on the user’s entry for the type of cuisine.
Please note that unlike fuzzy matching, at this
stage, queries must exactly match the tokens in the
documents for successful filtering.

"$match": {
"Cuisine": f"{cuisine}"

157

CHAPTER 5 INTEGRATING DATABASES

0 83 TestAccount = @ AccessManoger v Billing All Clusters. - Get Help ~
B Test Project v i Atlan App Services 2 v A
£ DIPLOYMENT o
srifiguration Meth JSOM Editar
| ootabase
Loks PREVIEW JSON Editor View Atlas Search Docs

[E] DATA SERVICES

Dato Fadaration

@ secumTy

Figure 5-17. Creating a full-text index for the database (continued)

4. Limit results

Finally, at this stage, we will limit the number of
results passed to the required amount:

"$limit": 5

For information regarding additional options for the
aggregation pipeline, please refer to https://docs.
mongodb.com/manual/reference/aggregation/.

5.2.5. Displaying Tables in Streamlit

Once the aggregation pipeline completes and returns the queried results,
post-processing is necessary before rendering the table in Streamlit.
Specifically, you need to convert the MongoDB query result into a Pandas
DataFrame and specify the columns to retain. Additionally, parse any

returned lists (such as restaurant grades) and convert them to plain text as
shown in the following:

158

https://docs.mongodb.com/manual/reference/aggregation/
https://docs.mongodb.com/manual/reference/aggregation/

CHAPTER 5 INTEGRATING DATABASES

df = pd.DataFrame(result)[['Name', 'Address’,'Grade', 'Score']]
df['Grade'] = [, '.join(map(str, x)) for x in df['Grade']]

You can refer to Listing 5-4 for the complete code in this section.
Additionally, the associated Streamlit application is shown in Figure 5-18,
displaying an example of a fuzzy matched query and the returned table in
Streamlit.

Listing 5-4. mongodb.py

import streamlit as st
import pandas as pd
from pymongo import MongoClient
@st.cache_resource
def create client():
return MongoClient('<connection string>")
def query(cuisine,address):
result = create client()['sample restaurants']
['restaurants'].aggregate([
{
"$search": {
"index": "default",
"text": {
"query": f"{address}",
"path": ["borough", "address.street"],
"fuzzy": {
"maxEdits": 2,
"prefixLength": 2

159

http://mongodb.py

CHAPTER 5 INTEGRATING DATABASES

boA
"$project”: {
"Name": "$name",
"Cuisine": "$cuisine",
"Address": "$address.street"”,
"Borough": "$borough",
"Grade": "$grades.grade",
"Score": {
"$meta": "searchScore"
}
}
b A
"$match": {
"Cuisine": f"{cuisine}"
}
oA
"$limit": 5
}
D
try:
df = pd.DataFrame(result)[['Name','Address','Grade',"'S
core']]
df['Grade'] = [',"'.join(map(str, x)) for x in
df['Grade']]
return df
except:
return None
if _name_ == "' main_ ':

st.title('Restaurants Explorer')
cuisine = st.selectbox('Cuisine',['American','Chinese’, 'Del
icatessen',

160

CHAPTER 5 INTEGRATING DATABASES

"Hamburgers', 'Ice Cream, Gelato, Yogurt, Ices','Irish'])
address = st.text_input('Address')
if st.button('Search'):
if address != ":
st.write(query(cuisine,address))
else:

st.warning('Please enter an address')

Restaurants Explorer

Figure 5-18. Output of Listing 5-4

5.3. Summary

In this chapter, we explored relational and nonrelational databases for
storing and retrieving structured and unstructured data, respectively.

We learned how to provision a PostgreSQL database and integrate it

with a Streamlit application to manage and process structured datasets.
Similarly, we saw how to provision a MongoDB cloud database to handle
unstructured data, storing collections of documents with varying schemas,
objects, and elements. We also demonstrated how MongoDB can create

a full-text index, indexing every token in each document for improved

161

CHAPTER 5 INTEGRATING DATABASES

querying, and how to perform fuzzy matching of query terms with
document tokens to reduce the impact of typos. Finally, we wrapped up by
integrating all these operations—setting up a database client, writing an
aggregation pipeline, and postprocessing queried results—into a Streamlit
application.

162

CHAPTER 6

Leveraging Backend
Servers

In this chapter, we will introduce a more sophisticated and scalable
approach to designing web applications. Specifically, we will explore how
to offload the overhead of managing databases from the Streamlit server to
an independent backend server, as is typical in a full-stack environment.
The chapter will guide the developer through the process of provisioning

a backend server in Python, which will act as an intermediary between

the database and the frontend. Finally, the developer will be introduced to
a highly modular, versatile, and secure architecture, with added security
layers between the application and the database.

6.1. The Need for Backend Servers

As part of building a scalable and robust Streamlit application, certain
tasks that are executed within the Streamlit app are better handled in

an isolated environment that can be easily communicated with. This
environment is called a backend, which is responsible for managing
authentication, authorization, databases, and other gateway connections.
Additionally, it handles core business logic that should not be executed
on the frontend (i.e., Streamlit). Although Streamlit is a server-side

web framework, isolating it from other system components improves

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 163
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_6

https://doi.org/10.1007/979-8-8688-1826-4_6#DOI

CHAPTER6 LEVERAGING BACKEND SERVERS

modularity and security. Running everything, from authentication to
database management, directly within Streamlit can introduce multiple
security risks, such as XSS, SSRE, and potentially RCE, if not engineered
properly.

While a backend-frontend architecture is not invulnerable, it adds an
extra layer of protection through the use of APIs. This makes it harder for
malicious actors to bypass security measures and access protected system
components. Modern API design methodologies also ensure that every
request is routed through a consistent mechanism, reducing the likelihood
of vulnerabilities due to human error.

6.2. Frontend—Backend Communication

The backend is typically referred to as the server, while the frontend is
known as the client. In this setup, the client triggers a request for resources
or information based on user actions. The server then responds with
the requested data. This request-response communication model is the
foundation of the HTTP protocol, which consists of two main components:
headers and the body.

The request and response headers contain metadata about the request
and the payload in the body. This metadata includes, but is not limited
to, cookies, request identifiers, keys, tokens, the body’s content type,
the host or IP address of the server, and data encoding or compression
mechanisms. For the purposes of this book, we will focus on key aspects
like keys, tokens, cookies, and the content type of the body. As an example,
request body types are shown in Table 6-1. Since backends primarily
handle the sending and receiving of information, JSON is the most widely
used format for communication.

164

CHAPTER 6 LEVERAGING BACKEND SERVERS

Table 6-1. Common content-type header values

Content-Type Description
Value

text/HTML Text format but is parseable to HTML to be rendered as a web page
application/JSON JSON format
application/xml XML format

image/png Image binary of type PNG

6.2.1. HTTP Methods

HTTP requests have methods, as discussed in Section 5.1. Unlike SQL, the
syntax of HTTP methods does not drastically change. The main methods
are GET, POST, PUT, and DELETE, which correspond to retrieving, adding,
modifying, and deleting a resource, respectively. Adding and modifying
resources can include a body to alter the resource, while GET and DELETE
typically use resource identifiers in the request URL. These are the core
functions of a RESTful API, which acts as an HTTP gateway to manage
resources or data on the server side.

Visiting a website is a GET request to the URL, which includes
request-specific data in its header, body, and response code. For example,
requesting a page with just its domain name will by default request its
HTTP version, but the backend server may redirect to the HTTPS version.
For instance, Google redirects from google.com to https://google.com.
You can check this by inspecting the page’s network traffic or using Curl.
Curl is a tool for making HTTP requests from the terminal or CMD,
allowing you to view the response body, headers, and status code. It also
helps in understanding backend commands, like following a redirect.
Figure 6-1 demonstrates this with the command curl -i -L google.com,
where -1 displays response headers and -L follows redirects.

165

https://google.com

CHAPTER 6 LEVERAGING BACKEND SERVERS

Figure 6-1. Getting google.com and watching response headers and
redirection

6.3. Working with JSON Files

JSON documents can be used to represent and parse data. They can
contain lists/arrays or key/value pairs, similar to dictionaries in Python.
They can also include other primitive data types such as integers, floats,
strings, and booleans. With these simple data types, complex data
structures can be represented. A sample JSON representing one of the
previously introduced examples is shown in Listing 6-1.

Listing 6-1. sample_json.json

[

{
“Name": "Adam",
"DOB": "01/01/1990",
"Paygrade ID": "2"
})

166

http://google.com

CHAPTER 6

"Name": "Sara",
"DOB": "01/01/1980",
"Paygrade ID": "1"

"Name": "Bob",
"DOB": "01/01/1970",
"Paygrade ID": "1"

"Name": "Alice",
"DOB": "01/01/2000",
"Paygrade ID": "3"

LEVERAGING BACKEND SERVERS

6.4. Provisioning a Backend Server

To stay consistent with the Python theme of the book, we will build a
Pythonic backend server. Among the options available, Flask and Django
are both great choices for this task. While both can serve as frontend
application servers by delivering HTML for browsers to render, Django is
designed specifically for that purpose, thanks to its built-in web template
engine, Jinja. On the other hand, Flask is more flexible and configurable to
the developer's needs, and it is lighter in weight. To get started, install Flask

using pip.

167

CHAPTER6 LEVERAGING BACKEND SERVERS

6.4.1. API Building

A backend will execute one or more methods or functions in response to
arequest to the server. These methods and functions depend on the URL
and can be configured to take headers into consideration as well. A simple
example of this is shown in Listing 6-2, where requesting http://<SERVER-
HOST>/server status will serve the page in Figure 6-2, while any other
request will return a 404 Not Found error.

Listing 6-2. flask_sample.py

from flask import Flask
app = Flask(__name)
@app.route('/server status')
def welcome controller():
return {
'message': 'Welcome to your Flask Server',
'status': 'up',
‘random': 1 + 1
}
app.run()

< C ® http://127.0.0.1:5000/server_status

Pretty-print

{
"message": "Welcome to your Flask Server",
"random": 2,
Ilstatusll: "up"

}

Figure 6-2. Page returned when the /server_status route is requested
for the server with Listing 6-2

168

CHAPTER 6 LEVERAGING BACKEND SERVERS

To trigger a specific function call when a route is requested, a function
decorator needs to be added before it with the route name. Routes do not
have to be static; they can be dynamic by using a specific string format,
which Flask will map to that function. For example, /text/1 and /text/3
can map to /text/<id>. Additionally, the HTTP method can be specified
in the same function decorator by adding an extra parameter, like this:

@app.route('/text/<id>"', methods=['GET', 'PUT'])

Following up on the Employee and Pay Grade example from before, we
will reuse the same database for this example but use SQLAlchemy instead
of psycopg2 to take advantage of the ORM, which maps SQL commands
to Python class objects. To begin, we need to represent our tables as
classes, along with a Base class that the other two classes will inherit SQL
properties from. These properties include SQL query parameterization to
prevent SQL injection (SQLI). The classes in Listings 6-4 and 6-5 will point
to already existing tables in the database, with the _tablename_ property
representing the table name.

Listing 6-3. DataBase/Base.py

from sqlalchemy.ext.declarative import declarative base
Base = declarative base()

Listing 6-4. DataBase/PayGrades.py

from sqlalchemy import Column, Integer, String
from DataBase.Base import Base

class PayGrades(Base):
__tablename__ = 'paygrades’
id = Column(Integer, primary key=True)

base salary = Column(String)
reimbursement = Column(String, default=True)
bonuses = Column(String)

169

CHAPTER6 LEVERAGING BACKEND SERVERS

def to dict(self):
return {
"id": self.id,
"base_salary": self.base salary,
"reimbursement": self.reimbursement,
"bonuses": self.bonuses

}

Listing 6-5. DataBase/Employees.py

from sqlalchemy import Column, Integer, String
from DataBase.Base import Base

class Employees(Base):
__tablename = 'persons'’
id = Column(Integer, primary key=True)

name = Column(String)
date of birth = Column(String, default=True)
paygrade id = Column(Integer, unique=True, index=True)

def to dict(self):
return {
"id": self.id,
"name": self.name,
"date_of birth": self.date of birth,
"paygrade _id": self.paygrade id
}

Then, we can support adding and retrieving employee data through
HTTP requests using Flask, as shown in Listings 6-6, 6-7, and 6-8. This
backend server includes two routes: the first queries all employees using
the database connection established with SQLAlchemy, and the second
inserts or adds a new employee to the employees table using user-supplied
properties sent in the HTTP body as a JSON document.

170

CHAPTER 6 LEVERAGING BACKEND SERVERS
Listing 6-6. DataBase/__init__.py

from .Employees import Employees
from .PayGrades import PayGrades

Listing 6-7. DataBase/Connection.py

from contextlib import contextmanager
from sqlalchemy import create engine
from sqlalchemy.orm import sessionmaker, Session

engine = create_engine("postgresql://
postgres:admin@127.0.0.1:5432/CompanyData")
DBSession = sessionmaker(bind=engine)

@contextmanager
def session manager() -> Session:
session = DBSession()
try:
yield session
except Exception as e:
session.rollback()
raise e
finally:
session.close()

Listing 6-8. main.py

from flask import Flask, request
from DataBase import Employees
from DataBase.Connection import session manager

app = Flask(__name_)

171

CHAPTER6 LEVERAGING BACKEND SERVERS

@app.route('/employees")
def get all employees():
with session manager() as session:

employees = session.query(Employees).all()
employees = [employee.to dict() for employee in
employees]

return {"data": employees}

@app.route('/employee', methods=["POST"])
def add_employee():
body = request.json
with session manager() as session:
session.add(Employees(**body))
session.commit()
return {"message": "New employee added successfully"}

app.run()

6.4.2. API Testing

In this example, the user will interact with the backend using an API
testing platform like Postman, as shown in Figures 6-3 and 6-4. In a later
section, Streamlit will directly interface with this server without the need
for an API testing platform.

172

CHAPTER 6 LEVERAGING BACKEND SERVERS

posT 1220015000/empiyee [sens - |

Figure 6-3. Adding a new employee

To wrap up this section, it is important to note that we did not set any
headers, including the content type for the POST/employee route using a
JSON payload, because Postman handled that automatically. Flask also
took care of adding the JSON content type to the response, as Python's lists
and dictionaries can be easily parsed into JSON, as mentioned earlier.

Cookies

Save Response ~

Figure 6-4. Getting all employees

173

CHAPTER6 LEVERAGING BACKEND SERVERS

6.5. Multithreading and Multiprocessing
Requests

Once an application scales, or when one of its initial requirements involves
heavy, independent computations or processes, a lot of power is wasted,
whether on the backend's Flask side or Streamlit's side. This is because

the full power of modern CPUs is not being utilized. Modern CPU strength
comes not from faster clock cycles, but from having more cores. By default,
both Streamlit and Flask are single-threaded, single-process applications.
To speed them up, we can leverage multiprocessing and multithreading,
which enable true parallelization. The developer can control the use

of both techniques to run a function multiple times, allowing it to be
executed in parallel by the CPU. An example of using both approaches in
Streamlit is shown in Listing 6-9 and shown in Figure 6-5.

Listing 6-9. streamlit_main.py

import streamlit as st

from multiprocessing import Pool, cpu_count
import threading

import time

def func(iterations, id):

i=0
for i in range(iterations):
i+=1

print('Finished job id =", id)
if _name_ == "' main_ ':

pool = Pool(cpu_count())

st.title('Speed You Code! ")

jobs count = 5

iterations = 10 ** 3

cl, c2 = st.columns(2)

174

with c1:

CHAPTER 6 LEVERAGING BACKEND SERVERS

if st.button('multiprocess’):

with c2:

inputs = [(iterations, i) for i in
range(jobs_count)]

t11 = time.time()

pool.starmap(func, inputs)

t21 = time.time()

st.write(f'Finished after {t21 - t11} seconds')

if st.button('multithread"):

threads = [threading.Thread(target=func,
args=(iterations, i)) for i in range(10)]
t12 = time.time()
for thread in threads:
thread.start()
for thread in threads:
thread. join()
t22 = time.time()
st.write(f'Finished after {t22 - t12} seconds')

Speed You Code!

multiprocess

Finished after 0.04653143882751465 seconds

Figure 6-5. Output of Listing 6-9

Notice that in Listing 6-9, the first code to be executed is after line 13,

which is essential for the entire example to work without errors. This
ensures that Streamlit knows the code block should be executed only once,
meaning the processing pool will not be initialized again during reruns. A
similar precaution should be taken in Flask applications.

175

CHAPTER6 LEVERAGING BACKEND SERVERS

The main difference between multiprocessing and multithreading
is that multithreading reuses the existing memory space, spawning new
threads within the same process, which is faster than spawning entirely
new processes that add the overhead of CPU context switching. In contrast,
each new process in the multiprocessing pool requires a separate memory
space. Additionally, each process’s inputs need to be copied or cloned,
which increases memory consumption. Although multithreading may
seem like the better option, it is not always true. Multiprocessing is more
CPU-efficient when handling heavy tasks, as the CPU scheduler allocates
more time to those processes. Figure 6-6 shows the correlation between
execution time and the job iteration count in 10x from Listing 6-9.

Y N .
&— Multiprocessing |
®— Multithreading
— 30 |
=
!
g
g 20
8
Z
® 10
4 »
Oe L] >-—— 1 — >
2 3 4 5 6 7 8
Iterations 10*

Figure 6-6. Multiprocessing vs. multithreading for five jobs with
increasing iteration count

6.6. Connecting Streamlit to a Backend Server

Once we have optimized the backend server with multiprocessing and/or
multithreading, we are ready to connect our Streamlit application to it. For
this, we will need to use an HTTP client library to communicate with the
backend API. Listing 6-10 uses the popular requests library to achieve this,
with the output shown in Figure 6-7.

176

CHAPTER 6 LEVERAGING BACKEND SERVERS
Listing 6-10. streamlit_api.py

import streamlit as st
import requests
import datetime
url = "http://127.0.0.1:5000"
def add_employee(name, dob, paygrade):
data = {
"name’: name,
'date_of _birth': dob,
'paygrade_id': paygrade
}
response = requests.post(url + '/employee', json=data)
if response.status code == 200:
return True
return False
def get employees():
response = requests.get(url + '/employees')
return response.json()['data’]
form = st.form('new_employee")
name = form.text input('Name")
dob = str(form.date_input('DOB', min_value=datetime.
datetime(year=1920, day=1, month=1)))
paygrade = form.number input('paygrade’, step=1)
if form.form submit button('Add new Employee'):
if add_employee(name, dob, paygrade):
st.success('Employee Added')
else:
st.error('Error adding employee')
st.write(' ")
employees = get employees()
st.table(employees)

177

CHAPTER 6 LEVERAGING BACKEND SERVERS

Hame

Ahmed

DOB

1985/01/01

paygrade

1 = i

Add new Employee

Employee Added

01/01/1990 Adam

01/01/1980 Sara

01/01/1570 Bob

B W N e
(e S R

01/01/2000 Alice

]

01/01/1975 5 HKaren

1985-01-01 & Ahmed 1

Figure 6-7. Output of Listing 6-10

6.7. Summary

In this chapter, we learned that backend servers are the backbone of every
expanding web application, adding layers of obscurity and security to the
frontend. We also explored HTTP communication, the language of APIs,
and its structure. To ensure efficient and organized API communication,
we introduced JSON, the most widely used data format in APIs. With
these building blocks in place, we then turned to Flask as a Python
backend framework to create a well-structured server that exposes specific
endpoints to serve data from a local database. Finally, we demonstrated
ways to speed up Python code execution, both in Streamlit and the
backend server, by leveraging multiprocessing and multithreading,
comparing the performance and use cases of each.

178

CHAPTER 7

Implementing
Session State

In order to develop more advanced Streamlit applications, it is vital to
establish session-specific data that can be used to deliver an enhanced
user experience. Specifically, the application will need to preserve the
user’s data and inputs using what is referred to as session states. These
states can be set and accessed on demand whenever necessary, and they
will persist when the user triggers a rerun of the Streamlit application

or navigates between pages. In addition, we will establish a method to
store state across multiple sessions using cookies, which can save data in
the user’s browser for access when they restart the associated Streamlit
application. Finally, we will learn how to record and visualize rich insights
into how users interact with our application, providing analytics for both
the developer and product owner alike.

7.1. Implementing Session State Natively

Since Streamlit version 0.84.1, a native way to store and manage session-
specific data—including but not limited to variables, widgets, text, images,
and objects—has been introduced. The values of session states are stored
in a dictionary format, where each value is assigned to a unique key for
indexing. Previously, without this feature, all variables would be reset

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 179
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_7

https://doi.org/10.1007/979-8-8688-1826-4_7#DOI

CHAPTER 7 IMPLEMENTING SESSION STATE

whenever the user triggered a rerun of the Streamlit script by interacting
with the application. Similarly, widgets would also reset to their default
values when the user navigated from one page to another. However,
with session state, users can enjoy an enhanced and more personalized
experience by accessing variables or entries previously made on other
pages within the application. For instance, users can enter their username
and password once and continue navigating through the application
without being prompted to re-enter their credentials—until they log
out. In a nutshell, session states enable us to develop far more complex
applications, which will be discussed extensively in subsequent chapters.
The method to set and get session state data can be implemented as
shown in Listing 7-1, with the associated output in Figure 7-1. Please note
that the first two key-value entries (KeyInput1 and KeyInput2) are present
even though they have not been explicitly created by the user. These keys
exist to store the state of the user-modified components—in this case, the
defined text input components. This means that the developer also has the
ability to modify the values of any component, as long as it has a unique
key assigned during its definition. Another important point is that each
session state must be initialized before it can be read; otherwise, an error
will occur. To prevent this, always make sure to initialize the state with a
null or default value.

Listing 7-1. session_state.py

import streamlit as st
def get state value(key):
return st.session state.get(key)
def set state value(key, value):
st.session state[key] = value
st.title('Session State Management')
c1, c2, c3 = st.columns(3)
with c1:

180

CHAPTER 7 IMPLEMENTING SESSION STATE

st.subheader('All")
st.write(st.session_state)
with c2:
st.subheader('Set Key')
key = st.text_input('Key', key='KeyInput1')
value = st.text input('Value')
if st.button('Set'):
st.session_state[key] = value
st.success('Success")
with c3:
st.subheader('Get Key')
key = st.text input('Key', key='KeyInput2')
if st.button('Get'):
st.write(st.session state.get(key))

Session State Management

All Set Key Get Key

"q

Figure 7-1. Session state data display and manipulation

7.1.1. Building an Application with Session State

To demonstrate the utility of session states, in the following example we
will create a simple multipage application where the user can use states to
store the key of the selected page, an uploaded dataframe, and the value of
a slider widget. As shown in Listing 7-2, on our main page we first initialize

181

CHAPTER 7 IMPLEMENTING SESSION STATE

the state for page selection, and then use buttons to change the state to the
key of the requested page. Subsequently, the associated function of the
selected page is invoked directly from the session state to render the page.
In Page One of the application, shown in Listing 7-3, we use session
states to store an uploaded dataframe and the value of a slider that filters
the number of rows displayed in the dataframe. The user can navigate back
and forth between pages and still access a previously uploaded dataframe
with the same number of rows set by the slider, as shown in Figure 7-2.

Listing 7-2. main_page.py
import streamlit as st

st.title('Main Page')

Initializing session state for page selection

if 'page state' not in st.session state:
st.session state['page state'] = 'Main Page'

Listing 7-3. page_l.py

import streamlit as st
import pandas as pd

st.title('Page One')
Initializing session states for dataframe and slider
if 'df' not in st.session_state:
st.session state['df'] = None
if 'rows' not in st.session state:
st.session_state['rows'] = None
file = st.file uploader('Upload file")
Writing dataframe to session state
if file is not None:
df = pd.read csv(file)
st.session state['df'] = df

182

CHAPTER 7 IMPLEMENTING SESSION STATE

if st.session state['df'] is not None:
Creating slider widget with default value from session state
rows = st.slider('Rows to display',value=st.session_
state['rows'], min_value=1,max _value=len(st.session_
state['df']))
Writing slider value to session state
st.session state['rows'] = rows
Rendering dataframe from session state
st.write(st.session state['df'].iloc[:st.session_
state['rows']])

Fage One

Page One

Figure 7-2. Output of Listings 7-2 and 7-3

7.2. Introducing Session IDs

Session IDs are unique identifiers for each new instance of a Streamlit
session. A new Session ID can be established whenever a new browser
page is opened, even if another connection is already active. However,
each session is treated independently by the server.

183

CHAPTER 7 IMPLEMENTING SESSION STATE

These unique IDs can be used to provide the end user with a
personalized experience. To achieve this, the server needs to map each
user’s progress and updates to their corresponding IDs. This mapping
can be done by generating unique session IDs in Streamlit. In Listing 7-4,
we demonstrate how to generate a session ID. The output is shown
in Figure 7-3, which displays two web pages both running at http://
localhost:8501/.

Listing 7-4. session_id_demo.py

import streamlit as st
import uuid

Check if session ID already exists, if not, create one
if 'session id' not in st.session state:
st.session state.session id = str(uuid.uuid4())

Access and display the session ID
st.title('Your session ID is:')
st.subheader(st.session state.session id)

Your session ID is: Your session ID is:

4ccl36ba-ae39-4672-890e-3ce69edc80aT 40f75f47-1197-49dd-a6b5-902c4445b413

Figure 7-3. Two different browser windows with different session IDs

184

CHAPTER 7 IMPLEMENTING SESSION STATE

7.3. User Insights

The ability to record user interactions with a web application is often
critical. Developers and product owners need access to detailed and
accurate data—such as how many users are visiting the site, when they are
visiting, and how they are interacting with it—in order to better tailor and
improve their product or service.Consider an ecommerce web application
that has been meticulously developed but is failing to convert leads into
sales, and the reason is unclear. It could be a hidden bug in the interface or
backend that is blocking user actions, or perhaps the server is overloaded
and unable to handle incoming traffic. In either case, identifying exactly
where the issue lies in the pipeline is essential—and this is where user
insights become invaluable.

While Google Analytics offers robust insights at the server level—
including visit counts, user demographics, and time spent on various
pages—it cannot effectively capture interactions at the application level.
As aresult, developers must implement their own methods to track in-app
user behavior.One simple approach, demonstrated in Listing 7-5, involves
logging a timestamp whenever the user interacts with a specific part of the
code—for example, by clicking a button or uploading a dataset, as shown
in Figure 7-4—and storing this data in a PostgreSQL database, as seen in
Figure 7-5. Similarly, the number of rows in the uploaded dataset can also
be recorded. Each data point is stored in a separate column within a table,
where the primary key is the session’s unique ID. When the application
restarts, a new row is created with a new session ID. By using the provided
update function, you can capture and record any value at any step of your

program.

update_row(column, new value, session id, mutable, engine)

185

CHAPTER 7 IMPLEMENTING SESSION STATE

Hello world

Step 1

Step 2

Figure 7-4. Output of Listing 7-6

Figure 7-5. Associated PostgreSQL database for Listing 7-5

Please note that insights can be overwritten multiple times by setting
the mutable argument to True, or left as False if you want to record a value
only the first time it is generated.

186

CHAPTER 7 IMPLEMENTING SESSION STATE

Listing 7-5. record_user_insights.py

import streamlit as st

import uuid

from datetime import datetime

import pandas as pd

import psycopg2

from sqlalchemy import create engine, text

def get session id():
if 'session_id' not in st.session_state:
session_id = str(uuid.uuid4()).replace('-', ' ")
st.session state.session id = ' id ' + session_id
return st.session state.session id

def insert row(session_id, engine):
with engine.connect() as conn:
result = conn.execute(text(f'SELECT session_id FROM
user_insights WHERE session id = "{session_id}"')).
fetchone()
if result is None:
conn.execute(text(f'INSERT INTO user_ insights
(session_id) VALUES ("{session_id}")"))
conn.commit()

def update row(column, new value, session_id, mutable, engine):
with engine.connect() as conn:
if mutable:
conn.execute(text(f'UPDATE user insights SET
{column} = "{new value}" WHERE session id =
"{session id}""))

conn.commit()

187

CHAPTER 7 IMPLEMENTING SESSION STATE

else:
result = conn.execute(text(f'SELECT {column} FROM
user_insights WHERE session _id = "{session_id}"')).
fetchone()
if result and result[0] is None:
conn.execute(text(f'UPDATE user_insights SET

{column} = "{new value}" WHERE session id =
"{session_id}"'))
conn.commit()

if _name_ == "' main_':

188

engine = create engine('postgresql://<username>:<password>@
localhost:<port>/<database>")
session_id = get session id()
with engine.connect() as conn:
conn.execute(text('CREATE TABLE IF NOT EXISTS user_
insights (session id text, step 1 text, step 2 text,
no_rows bigint)"))
conn.commit()
insert row(session id, engine)
st.title('Hello world")
st.subheader('Step 1")
if st.button('Click'):
st.write('Some content')
update row('step 1', datetime.now().strftime('%H:%M:%S
%d/%m/%Y"), session id, True, engine)
st.subheader('Step 2")
file = st.file uploader('Upload data')
if file is not None:
df = pd.read csv(file)
st.write(df)

CHAPTER 7 IMPLEMENTING SESSION STATE

update row('step 2', datetime.now().strftime('%H:%M:%S
%d/%m/%Y"), session _id, False, engine)

update row('no_rows', len(df), session id,

True, engine)

7.3.1. Visualizing User Insights

Now that we have established how to capture insights from a Streamlit
application and store them in a PostgreSQL database, the next step is to
visualize the data on demand. To begin, we can use Listing 7-6 to extract
the insights table into a Pandas dataframe and optionally save it locally
as an Excel spreadsheet if you wish to create your own custom charts.
Alternatively, we can use Listing 7-7 to visualize the data directly. In this
approach, we import the previously generated Excel spreadsheet into a
Pandas dataframe, convert the timestamps into hourly and daily values,
group and sum the number of rows that fall within the same hour or day,
and finally visualize them using Plotly charts, as shown in Figure 7-6.
Additionally, we can enable filtering by allowing the user to select a
column from the insights table using a st.selectbox widget.

Listing 7-6. read_user_insights.py

import pandas as pd
import psycopg2
from sqlalchemy import create engine
def read data(name,engine):
try:
return pd.read sql table(name,engine)
except:
return pd.DataFrame([])
if _name_ ==

__main__":
Creating PostgreSQL engine

189

CHAPTER 7 IMPLEMENTING SESSION STATE

engine = create_engine('postgresql://<username>:<password>@
localhost:’
'<port>/<database>")
df = read data('user insights',engine)
df.to excel('C:/Users/.../user_insights.xlsx',index=False)

Listing 7-7. plot_user_insights.py

import streamlit as st
import pandas as pd
import plotly.express as px
st.set _page config(layout="wide")
st.title('User Insights")
df = pd.read excel('C:/Users/.../user_insights.xlsx")
column_selection = st.selectbox('Select column', df.columns[1:-2])
df = df[column_selection]
df = pd.to datetime(df,format="%H:%M:%S %d/%m/%Y")
df 1h = df.copy()
df 1d = df.copy()
col1l, col2 = st.columns(2)
with col1:
st.subheader('Hourly chart")
df 1h = df 1h.dt.strftime('%Y-%m-%d %I%p")
df 1h = pd.DataFrame(df 1h.value counts())
df 1h.index = pd.DatetimeIndex(df 1h.index)
df _1h = df 1h.sort_index()
fig = px.bar(df_1h, x=df 1h.index, y=df 1h[column_selection])
st.write(fig)
with col2:
st.subheader('Daily chart')
df 1d = df 1d.dt.strftime('%Y-%m-%d")
df 1d = pd.DataFrame(df 1d.value counts())

190

CHAPTER 7 IMPLEMENTING SESSION STATE

df 1d.index = pd.DatetimeIndex(df 1d.index)

df 1d = df 1d.sort_index()

fig = px.line(df_1d, x=df 1d.index, y=df 1d[column selection])
st.write(fig)

User Insights

Hourly chart Daily chart

| 1% e jpve Wt
M IIII‘FIIIIIZIII"HI!'II VMW T A
Figure 7-6. Output of Listing 7-7

7.4. Cookie Management

We have discussed how to store and manage data within a session using
both native and workaround approaches. However, what may be missing
is the ability to manage data across sessions. For example, storing a
counter to track how many times a button has been clicked or, more
usefully, preventing the user from having to log in every time they start

a new session. To achieve this, we need to leverage cookies. And while
Streamlit has implemented its own native cookie management and even
authentication commands (st.context and st.login), in this book we
will focus on third party components as they offer additional functionality
that are yet not covered natively.

191

CHAPTER 7 IMPLEMENTING SESSION STATE

Cookies can be used to track a user’s actions across multiple websites
or store personal information, such as authentication tokens. They are
stored and managed on the user’s end, specifically in their browser, which
means the server does not have direct access to their content by default. To
view the cookies on any web application, simply open the developer tools
in your browser and go to the console tab. Then, type document. cookie to
display the cookies, as shown in Figure 7-7.

> document.cookie

Figure 7-7. A web page cookie

In a typical Streamlit application, there may be additional cookies—
beyond the one shown in Figure 7-7—that are used for purposes such as
advertisement tracking. These cookies may need to be removed depending
on the cookie policy the developer adopts. In other cases, the developer
may want to add additional cookies to enhance the application’s user
experience. Regardless, both actions require a method to manage cookies
in any web application.

To manipulate cookies within a Streamlit application, we need to use a
third-party module or library. For this example, we’ll use Extra-Streamlit-
Components, which can be installed via pip install extra-streamlit-
components and imported using the alias stx. The X in the alias represents
the extra capabilities that this library brings to a standard Streamlit app.
This library includes a module called Cookie Manager, which will be our
tool for managing cookies.Listing 7-8 demonstrates a simple Streamlit
application with the ability to set, get, and delete cookies. The controls are
customizable based on the developer's needs. For example, an expiration
date can be set for any new cookie, which will automatically delete the
cookie once the set date is reached. Figures 7-8 and 7-9 show examples of
adding and retrieving an authentication token, respectively.

192

CHAPTER 7 IMPLEMENTING SESSION STATE

Listing 7-8. cookie_management.py

import streamlit as st

import extra_streamlit components as stx

st.title('Cookie Management Demo")

st.subheader(' Featuring Cookie Manager from Extra-Streamlit-
Components_")

cookie manager = stx.CookieManager()

st.subheader('All Cookies:")

cookies = cookie manager.get all()

st.write(cookies)
c1, c2, c3 = st.columns(3)
with c1:

st.subheader('Get Cookie:")
cookie = st.text input('Cookie', key='0")
clicked = st.button('Get")
if clicked:
value = cookie manager.get(cookie)
st.write(value)
with c2:
st.subheader('Set Cookie:")
cookie = st.text input('Cookie’, key="1")
val = st.text input('Value")
if st.button('Add'):
cookie manager.set(cookie, val)
with c3:
st.subheader('Delete Cookie:")
cookie = st.text input('Cookie’, key='2")
if st.button('Delete’):
cookie manager.delete(cookie)

193

CHAPTER 7 IMPLEMENTING SESSION STATE

Cookie Management Demo

Featuring Cookie Manager from Extra-Streamlit-
Components

All Cookies:

Get Cookie: Set Cookie: Delete Cookie:

MuthToken

Figure 7-8. Adding an AuthToken cookie

Cookie Management Demo

Featuring Cookie Manager from Extra-Streamlit-
Components

All Cookies:

Get Cookie: Set Cookie: Delete Cookie:

Figure 7-9. Getting an AuthToken cookie

194

CHAPTER 7 IMPLEMENTING SESSION STATE

Please note that the All Cookies section in Figures 7-8 and 7-9 is
displayed in a well-structured JSON format, with some cookies redacted
for privacy reasons. It is also important to highlight that this Streamlit
application, using the newly introduced module, does not include a visual
component. This is because the module is categorized as a service—hence
the name Cookie Manager. However, this does not imply that all other
Streamlit-compatible libraries behave the same way; some may indeed
include visual elements as part of their functionality.

7.5. Summary

In this chapter, we explored how to store and access session states natively
with Streamlit. The use of session states is crucial in many cases and will
be extensively applied to develop advanced applications in the following
chapters. Additionally, the reader was introduced to session IDs—unique
identifiers associated with every new instance of a Streamlit application—
and shown how to record and visualize user insights. Finally, we covered
how to store and retrieve cookies in a browser, which is essential for
maintaining session states across multiple sessions of a Streamlit
application on the same browser. This is particularly useful for scenarios
where the user wants to automatically log in without re-entering their
credentials.

195

CHAPTER 8

Authenticating
Users and Securing
Applications

After familiarizing ourselves with the essential building blocks of a well-
structured Streamlit web application, we now require an additional feature
to deploy a production-ready app: a secure user authentication service.
Once all users requesting access to the application are authenticated,

we can ensure a secure user experience where private data remains safe
and any unwelcome or malicious requests are effectively denied. In this
chapter, we will learn how to establish user accounts, verify user actions,
and implement other housekeeping measures expected of any proficient
software engineer.

8.1. Developing User Accounts

In this chapter, we will build on the example from Chapters 5 and 6 by
introducing HR admins who can view and add employees along with their
pay grades. Assume there are designated admins responsible for these
actions, and the company frequently changes or assigns new admins. In
this case, our application needs to support the creation of multiple admin
accounts and authorize them accordingly.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 197
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_8

https://doi.org/10.1007/979-8-8688-1826-4_8#DOI
https://doi.org/10.1007/979-8-8688-1826-4_5
https://doi.org/10.1007/979-8-8688-1826-4_6

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Since these actions require authorized personnel, we need to
implement three main features: adding an admin table to our database,
enabling admin account creation, and authorizing users with admin
privileges to access the relevant parts of the service.

8.1.1. Hashing

To add a new table to the database, we will follow a process similar to what
was done previously, as shown in Figure 8-1. Notice that we are storing two
key pieces of information for each admin: the username and the password
hash. Instead of saving the password itself, we store a hash—a non-
guessable representation of the password. This approach helps protect
user privacy and credentials in the event of a data breach. If such a breach
occurs, the attacker would need to spend billions of years brute-forcing
the hashes to uncover even a single user's actual password. Hashing is
essentially a one-way transformation of data that cannot be reversed.

* & B & T . « EBipv B~ 88 a

Figure 8-1. Creating a new table to store admin credentials, using the
contents of Flask/create_admins_table.sql

198

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

After creating the new table, we will need to define a corresponding
Python class to create an ORM model for SQLAlchemy, as shown in
Listing 8-1. Password hashing can be performed using various algorithms,
such as MD5, SHA256, SHA512, and others. However, the most commonly
used algorithm in modern systems is Berypt. In fact, Berypt is the default
choice for securing user passwords in many Linux environments. Before
diving into how Bcrypt works, we first need to understand the methods
used to make a hash more secure.

As mentioned earlier, hashing transforms data. For example, the text

Password123
maps to
42f749ade7f9e195bf475F37a44cafch

using MD5. However, even a slight modification to the original plain text
can result in a significantly different hashed output, as shown below:

MD5 (Password1239) -> abd7fdbb048a611ea0a0937265765404

8.1.2. Salting

Including extra bytes in the password—also known as adding a salt—
results in a completely different hash. This is especially helpful in cases
where users reuse passwords across different websites and one of those
sites is breached. By salting the password, attackers will not be able to tell
whether the same password is used across multiple domains, making it
significantly harder to crack. However, this method becomes less effective
if the attacker knows the salt value and how it is applied. This is where
Berypt stands out—it introduces a cryptographic approach that stores
randomly generated salts within the hash itself. As a result, it becomes
possible to verify whether a Berypt hash was generated from a given
plaintext using an abstracted function from a Bcrypt library, as shown in
Listing 8-2.

199

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Listing 8-1. Flask/DataBase/Admins.py

from sqlalchemy import Column, Integer, String
from .Base import Base
class Admins(Base):
__tablename = 'admins'
id = Column(Integer, primary key=True)
username = Column(String)
password hash = Column(String, default=True)
def to dict(self):
return {
'id': self.id,
'username': self.username,
"password_hash': self.password_hash

}

Listing 8-2. Flask/Services/HashingService.py

import bcrypt
class HashingService:
def init (self, bcrypt gen salt: int = 12):
self.gen salt = bcrypt gen salt
def hash _bcrypt(self, plain text: bytes) -> bytes:
return bcrypt.hashpw(plain text, bcrypt.gensalt(self.
gen salt))
def check bcrypt(self, plain text: bytes, hashed password:
bytes) -> bool:
try:
return bcrypt.checkpw(plain text, hashed password)
except:
return False

200

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

8.2. Verifying User Credentials

Now that we have the necessary services and storage mechanisms to
manage passwords, we can proceed with refactoring the backend to
support authentication for every route. This means we need to intercept
each request to the server and determine whether it is authenticated.

In other words, we need an independent software component to sit
between the client’s request and the access controller. This component is
commonly referred to as middleware by backend developers.

The authentication process must check for a specific identifier
in the request that the server can trust. This identifier is known as an
authentication token, or simply token. The token should be issued by the
server and must be verifiable.

Tokens are generally one of two types: custom session IDs or JWTs. In
this example, we will use JWTs, as they do not require server-side storage,
making them stateless. AJWT consists of three parts, encoded in Base64
and separated by periods. The first part contains metadata about the
signing algorithm, the second holds the raw payload, and the third is a
password-protected signature of the payload, created using the hashing
algorithm specified in the first part. This structure is illustrated in more
detail in Figure 8-2 from jwt.io.

201

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

This is the bata of the new jwiio! Share faedback on new LUK 7 =

[, FA Debigg Wioducton Ubraes Ask
ot

JWT Decoder

JSON WEB TOKEM [JWT)

Figure 8-2. JSON Web Token (JWT) content

When a new request is made, we will check the headers for a token.
The token’s payload will be signed, and the signature will be compared
against the signature in the passed token. If they match, we can confirm
that the token was issued by the server. For added security, to prevent
attackers from stealing legitimate tokens, we will set an expiration date
(defaulting to 30 days from issuance), which will require the user to log in
again once it expires. Since this process involves multiple logical steps, it
is best to isolate it as a dedicated service to manage tokens, as shown in
Listing 8-3.

Listing 8-3. Flask/Services/JWTService.py

from jwt import PyJWT

from time import time

from typing import Union

class JWTService:
expires in seconds = 2592000
signing algorithm = 'HS256'

202

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

def init (self, signing key: str, expires in seconds:
int = 2592000):
self.signing key = signing key
self.expires _in seconds = expires in_seconds
def generate(self,
data: dict,
expires in seconds: int = expires in seconds) ->
Union[str, None]:
try:
instance = PyJWT()
curr_unix_epoch = int(time())
data['iat'] = curr_unix_epoch
if isinstance(expires_in seconds, int):
data['exp'] = curr_unix_epoch + expires_
in_seconds
token = instance.encode(
payload=data,
key=self.signing key,
algorithm=self.signing algorithm)
if type(token) == bytes:
token = token.decode('utf8') # Needed for some
versions of PyJWT
return token
except BaseException as _
return None
def is valid(self, token: str, verify time: bool = True)
-> bool:
try:
payload = self.get payload(token)
if payload is None:
return False

203

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

if verify time and 'exp' in payload and
payload['exp'] < int(time()):
return False
return True
except:
return False
def get payload(self, token: str):
try:
instance = PyJWT()
payload = instance.decode(
jwt=token,
key=self.signing key,
algorithms=[self.signing algorithm])
return payload
except Exception as e:
return None

Now that we have a way to issue and validate tokens, we can integrate
this logic into our middleware class, as shown in Listing 8-4. This class
includes a function responsible for checking whether the requested route
requires authentication. If authentication is needed, the middleware
will verify whether the provided JWT is valid. If the token is invalid or
missing, it will return a standard 401 error, which indicates Not Authorized.
Otherwise, it will return None, signaling that the request can proceed to the
next step in the backend code—in our case, the controller.

As shown in line 8, we specify that the login and sign-up routes—both
of which will be introduced later—do not require authentication. This is
because, after a successful login, a token will be issued to the user. The
same applies to sign-up, although we will introduce an additional layer
of protection later to prevent abuse by external actors creating accounts
without oversight.

204

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Listing 8-4. Flask/Middleware/Middleware.py

from flask import Request
from Services.JWTService import JWTService
from werkzeug import exceptions
class Middleware:
def _init (self, jwt service: JWTService):
self.unauthenticated route names = {'/api/auth/login’,
"/api/auth/sing up'}
self.jwt _service = jwt service
def auth(self, request: Request):
is_route_unauthenticated = request.path in self.
unauthenticated_route_names
if is_route unauthenticated:
return None
if 'token' in request.headers:
token = request.headers|['token']
is valid = self.jwt service.is valid(token)
if is_valid:
return None
else:
return exceptions.Unauthorized()
return exceptions.Unauthorized()

Finally, we need to initialize the previously created services and
define three additional routes for logging in, signing up, and checking
login status. The last route is necessary to allow the frontend to determine
whether it should display the login page. The server’s main file should look
like Listing 8-5.

As shown in the listing, secrets and keys are read from an external
YAML file and then parsed. One of these secrets is used to ensure that
only those who know it can create new accounts, as demonstrated in
Figures 8-3 and 8-4 using Postman.

205

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Listing 8-5. Flask/flask_main.py

from flask import Flask, request

from DataBase import Employees, Admins

from DataBase.Connection import session manager
from Services import JWTService, HashingService
from Middleware import Middleware

from werkzeug import exceptions

import yaml

app = Flask(__name)

with open(".streamlit/secrets.toml") as f:
yaml dict = yaml.safe_load(f)
sing up key = yaml dict['sing up key']
jwt_secret = yaml dict['jwt secret']

jwt_service = JWTService(jwt secret)
middleware = Middleware(jwt service)
hashing service = HashingService()

app.before request(lambda: middleware.auth(request))

@app.route('/api/employees")
def get all employees():
with session_manager() as session:
employees = session.query(Employees).all()
employees = [employee.to dict() for employee in employees]
return {"data": employees}

@app.route('/api/employee’, methods=["POST"])
def add_employee():
body = request.json
with session_manager() as session:
session.add(Employees(**body))

206

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

session.commit()
return {"message": "New employee added successfully"}

@app.route('/api/auth/login', methods=["POST"])
def log in():
username, password = request.json['username'], request.
json['password"]
with session manager() as session:
admin_account = session.query(Admins).filter(
Admins.username == username).first()
print(1)
if admin_account is None:
Username doesn't exist. But don't inform the
client with that as
they can use it to bruteforce valid usernames
return exceptions.Unauthorized(
description="Incorrect username/password
combination")
print(2)

Checking if such hash can be generated from that
password
is_password correct = hashing service.check bcrypt(
password.encode("utf8"), admin_account.password
hash.encode("utf8"))
print(3)
if not is_password correct:
return exceptions.Unauthorized(
description="Incorrect username/password
combination™)
print(4)

token payload = {"username": username}

207

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

token = jwt service.generate(token payload)
print(5)

if token is None:
return exceptions.InternalServerError(description="
Login failed")

print(6)

return {"token": token}

@app.route('/api/auth/sing up', methods=["POST"])

def

sign up():

username, password = request.json['username'], request.

json['password"]

if request.headers.get("sing up key") != "sing up key":
exceptions.Unauthorized(description="Incorrect Key")

with session manager() as session:

password_hash = hashing_service.hash bcrypt(
password.encode("utf-8")).decode("utf-8")

admin = Admins(username=username, password

hash=password_hash)

session.add(admin)

session.commit()

return {"message": "Admin account created successfully"}

@app.route('/api/auth/is_logged in")

def

app.

208

is logged in():

If this controller is reached this means the
Auth middleware recognizes the passed token
return {"message": "Token is valid"}

run()

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

pos 1270015000300 autsing 5 ER
Aut) . r 3 1t Cookies

KEY VALUE DESCRIPTION =+ Bulk Edit Pressts «

Figure 8-3. Creating an admin account, step 1: adding a sign-up key

127.0,0.1:5000/apllauthising_up

PO bt bk e “
1 A Lzay " E Pre ' nokies

Figure 8-4. Creating an admin account, step 2: setting the new
account’s credentials

After creating the account, we can manually check the database to
verify that the new credentials have been stored. This is demonstrated in
Figure 8-5, where the username matches the one provided, and the other
column contains a valid Berypt hash of the supplied password.

209

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Query Editor Query History

Data Output Explain Messages Notifications

id) usemame P password_hash 7
Y [PK] integer character varying (255) character varying (255)

1 1 adminl $2b5128dYnyDzALbYI7JF /g QUT7uSdkcVMaZ CORvIsSkrGSCH|DydsmNIGC

Figure 8-5. Created account details in the database

Now that we have admin accounts set up, we can test the login process
using Postman before moving on to the next steps. By sending the same
username and password used during sign-up in JSON format via a POST
request to the appropriate route, we receive a token in response, as shown
in Figure 8-6.

post 12700:15000/apifautrogin “

form-data wowww-form-urlencoded @ raw winary GraphQL JSON Beautity

Figure 8-6. Logging in with Postman using credentials from
Figure 8-4

Moving on to the next phase of development on the Streamlit side,
we will start by refactoring Listing 8-6 to support initialization with
an authentication token. This token will then be included in every

210

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

request—except for the login request, where it is not yet available. It is also

worth noting that the is_logged_in function is implemented to quickly

check the validity of the current token, if one is provided.

Listing 8-6. Streamlit/APILpy

import requests
class API:

def

def

def

def

__init_ (self, base url: str, token: str):
self.base url = base url

self.base headers = {'token': token}
add_employee(self, name, dob, paygrade):

try:
data = {
"name': name,
'date_of birth': dob,
'paygrade id': paygrade
}

response = requests.post(self.base url + '/employee',
json=data, headers=self.base headers)
if response.status code == 200:
return True
except:
return False
get _employees(self):
try:
response = requests.get(self.base url + '/employees',
headers=self.base headers)
return response.json()['data’]
except:
return None
login(self, username, password):

211

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

try:
response = requests.post(self.base url + '/auth/
login', json={
'username': username,
'password’: password
)
body = response.json()
token = body.get('token') if type(body) == dict
else None
return token
except:
return None
def is logged in(self):
return requests.get(self.base url + '/auth/is logged
in', headers=self.base headers).status code == 200

With our API now adapted to use authentication tokens, as shown
in Listing 8-7, we can move on to the frontend by implementing cookie
support to store these tokens and use them as needed, as demonstrated in
Listing 8-8. Whenever Streamlit renders, it will check the local cookies for
an authentication token. If the token is valid, the application will display
the management portal, along with a customized welcome message, as
shown in Figure 8-8. Otherwise, it will prompt the user to log in, as shown
in Figure 8-7.

Listing 8-7. Streamlit/APILpy

import requests
class API:
def _init (self, base url: str, token: str):
self.base url = base url
self.base headers = {'token': token}
def add_employee(self, name, dob, paygrade):

212

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

try:
data = {
"name': name,
"date_of birth': dob,
'paygrade_id': paygrade
}
response = requests.post(self.base url + '/
employee', json=data, headers=self.base headers)
if response.status code == 200:
return True
except:
return False
def get employees(self):
try:
response = requests.get(self.base url + '/
employees', headers=self.base headers)
return response.json()['data’]
except:
return None
def login(self, username, password):
try:
response = requests.post(self.base url + '/auth/
login', json={
'username': username,
'password': password
1)
body = response.json()
token = body.get('token') if type(body) == dict
else None
return token

213

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

except:
return None
def is logged in(self):
return requests.get(self.base url + '/auth/is logged
in', headers=self.base headers).status code == 200

Listing 8-8. Streamlit/streamlit_main.py

import streamlit as st

from Views import AddEmployee, DisplayEmployees, Login
from API import API

import extra_streamlit components as stx

import base64, json

cookie manager = stx.CookieManager()

cookies = cookie manager.get all()

authentication token = cookies.get("token")\
if type(cookies) == dict else cookies

api = API("http://127.0.0.1:5000/api", authentication token)

def get username from token(auth token):
b64 = str(auth token).split(".")[1]
b64 = b64 + "=" * (4 - (len(b64) % 4))
data = baseb64.b64decode(b64).decode("utf8")
username = json.loads(data)['username’]
return username

def manage login(username, password):
token = api.login(username, password)
cookie manager.set("token", token)
return token is not None

214

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

st.title("Company Management Portal")

if st.user.is logged in or api.is logged in():
st.subheader (f"_Welcome "
f"**{get username from token(authentication_
token) }*¥* ")
if st.button("Log out"):
cookie manager.delete("token")
st.write(" ")
AddEmployee(api.add employee)
st.write(" ")
DisplayEmployees(api.get employees)
else:
Login(manage login)

Company Management Portal

Login

Username

Password

Login

Log in with Google

Figure 8-7. Login page

215

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Company Management Portal

Welcome admin

Log out

Add a new employee

Name

DoB

2025/07/28

paygrade

0 - *

Add new Employee

Current Employees

01/01/1930 1 Adam 2
01/01/1988 2 Sara 1
01/01/1970 3 Bob 1
01/01/2000 4 Alice 3

Figure 8-8. Adding and viewing the list of authenticated employees

216

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

Looking closely at the Streamlit-side code, we can see that it follows
a coding pattern similar to the backend—namely, dependency injection.
This approach helps maintain coherence across the entire codebase.
Essentially, the API actions are passed down to the views, which are
abstracted into a class, as demonstrated in Listings 8-9, 8-10, and 8-11.

Listing 8-9. Streamlit/Views/AddEmployee.py

import streamlit as st
from typing import Callable
import datetime
class AddEmployee:
def init (self, on submit: Callable[[str, str,
int], bool]):
st.header('Add a new employee')
form = st.form('new _employee')
name = form.text input('Name")
dob = str(form.date input('DOB",
min_value=datetime.datetime(year=1920,
day=1, month=1)))
paygrade = form.number input('paygrade’, step=1)
if form.form submit button('Add new Employee'):
success = on_submit(name, dob, paygrade)
if success:
st.success('New employee added')
else:
st.error('Employee not added')

Listing 8-10. Streamlit/Views/DisplayEmployees.py

import streamlit as st
from typing import Callable
class DisplayEmployees:

217

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

def _init (self, get employees: Callable[[], list]):

st.header('Current Employees')
employees = get employees()
if employees is None:

st.error('Error getting employees')
else:

st.table(employees)

Listing 8-11. Streamlit/Views/Login.py

import streamlit as st
from typing import Callable

class Login:

218

def _init (self, on_login: Callable[[str, str], bool]):

st.header("Login")
username = st.text input("Username")
password = st.text input("Password",type="password")

if st.button("Login"):
success = on_login(username, password)
if success:
st.success("Login successful")
else:
st.error("Incorrect username and password
combination")

st.owrite(" ")

if st.button("Log in with Google"):
st.login()

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

8.3. Secrets Management

As we have already discussed how to keep a Streamlit application’s secret
credentials safe from external access, we will now introduce another
method—commonly used in Flask—that can also be applied in a Streamlit
context. Essentially, we need a file to store these secrets. This includes the
JWT signing key and the sign-up header key, which should be saved on
disk and then loaded into the application's memory during runtime. While
there are various ways to store secrets and keys, one of the most user-
friendly options is using YAML files, as shown in Listing 8-12. These files
can be easily parsed and converted into a Python dictionary.

To support signing in with other one-click methods like with Google
or Microsoft, you will need to add necessary credentials to the file below
to allow your application to utilize these methods of signing in. Extra
detail on how to set it up can be found in https://docs.streamlit.io/
develop/api-reference/user/st.login

Listing 8-12. Flask/secrets.yaml

jwt_secret: "A RANDOM TEXT HERE"
sign_up_key: "ANOTHER RANDOM TEXT HERE"
auth:
redirect uri: "http://localhost:8501/0auth2callback"

cookie secret: "xxx

client_id: "xxx
client_secret: "xxx"
server metadata url: "https://accounts.google.com/.well-

known/openid-configuration”

219

https://docs.streamlit.io/develop/api-reference/user/st.login
https://docs.streamlit.io/develop/api-reference/user/st.login

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

8.4. Anti-SQAL Injection Measures
with SQLAIchemy

As a final code-implemented protection, we aim to protect the backend’s
SQL queries by preventing unintended actions from occurring. First, we
need to identify what SQL injection is. It typically happens when user-
controlled input changes the behavior of the SQL command. For example,
suppose we want to support searching for employees whose names start
with a string provided by the end user. This could result in a query like:
SELECT * FROM Employees WHERE name = 'input’%'.However, this poses
a threat if the inputis OR 1=1 --, which would change the final query
to:SELECT * FROM Employees WHERE name = '%' OR 1=1 --.

This causes the database to return all employees instead of treating the
input as the search string.

To prevent this problem, we use parameterization, a technique that
separates the SQL command from the changing variables. So, in the
example above, the query would look like: SELECT * FROM Employees
WHERE name = '@name%’',where @nameis a SQL variable initialized before
submitting the query. As a developer, this may seem like extra work to
ensure more secure SQL. However, libraries and packages can handle this
for us. For this purpose, we are using SQLAlchemy, which is a library that
connects to many types of databases and adapts SQL command formats
based on the database architecture, origin, and version. It follows an
intuitive API that is well-documented at docs.sqlalchemy.org.

8.5. Configuring Gitignore Variables

Tracking all files with a version control system like Git is essential for large
projects, as it simplifies managing important files and their modification
history. However, not all files should be tracked, especially those that could
pose security risks. If the codebase is public, or if a private repository is

220

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

compromised, secrets stored in the tracked files become vulnerable. For
this reason, it is widely accepted among developers not to track secrets
files in version control. Instead, secrets should be stored in a secure vault
that can be accessed through various authentication methods.

While this approach adds an extra layer of security, it can negatively
impact code readability, especially if an unfamiliar developer starts
working on the project. To resolve this, we can add a file named Flask/
secrets.example.yaml that contains similar content to the actual secrets file,
but with the sensitive key values replaced by vague placeholders, as shown
in Listing 8-13. This provides an example for developers without exposing
real secrets.

Next, we can exclude the actual secrets file from Git by updating the
.gitignore file, as shown in Listing 8-14. If necessary, any file or folder in the
same directory as .gitignore can be ignored or excluded, depending on the
specified syntax.

Listing 8-13. Flask/secrets.example.toml

jwt_secret = "<INSERT TEXT>"
sing up key = "<INSERT TEXT HERE>"

[auth]

redirect uri = "http://localhost:8501/0auth2callback”

cookie secret = "xxx"

client id = "xxx"

client secret = "xxx"

server metadata url = "https://accounts.google.com/.well-known/
openid-configuration" # fmt: skip

Listing 8-14. Flask/.gitignore

Secrets.example.toml

221

CHAPTER 8 AUTHENTICATING USERS AND SECURING APPLICATIONS

8.6. Summary

As part of making any web application public, it is essential to manage the
resources being served by verifying each user's authorization level. In this
chapter, we have explained how to create and manage user accounts and
use them for authentication. We introduced key security mechanisms,
such as generating JSON Web Tokens, hashing passwords, and embedding
secure signatures into cookies. Additionally, we covered techniques

to prevent SQL injection attacks, ensuring unauthorized users cannot
access the database. Finally, we explored how to secure application keys
and secrets during deployment and how to exclude them from being
committed to a version control system like Git.

222

CHAPTER 9

Deploying Locally
and to the Cloud

As you approach the end of the development phase with your Streamlit
application, it is time for it to see the light for the first time. In other
words, you are ready to deploy the application and share your work with
the world. To do that, you will need a machine to serve your application
continuously, robustly, and resiliently. While it is possible to turn your
local machine into a makeshift server, you are better off deploying the
application to the mighty cloud—using platforms like Amazon Web
Services, Microsoft Azure, Google Cloud Platform, or, last but not least,
Streamlit itself.

In this chapter, we will walk through the steps required to forward your
local application to the web, and more importantly, how to deploy your
application on remote servers using Linux containers, Windows Server,
and Streamlit’s dedicated cloud service, Streamlit Cloud. By the end of this
chapter, you will have acquired the technical know-how to serve your users
both within a local network and across the World Wide Web.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 223
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_9

https://doi.org/10.1007/979-8-8688-1826-4_9#DOI

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

9.1. Exposing Streamlit to the World
Wide Web

After building an application with Streamlit, you can see it in action by
visiting the loopback address in your browser at http://127.0.0.1:8501.
In addition, you can also share it locally with people and devices on

your local network, which typically assigns IP addresses starting with
192.168.% 172.(16-31).*, or 10. *. To access the running Streamlit
application from any device on the same network, simply prepend your

IP address with http:// and append :8501 or whichever port Streamlit

is listening on. However, there is no straightforward way to temporarily
showcase your Streamlit application to anyone, anywhere, without leasing
a static public IP from your ISP or renting a cloud server from a major
provider. In this section, we will explore free, easy-to-configure methods to
present your application globally at no extra cost.

9.1.1. Port Forwarding over a Network Gateway

Almost every household has a broadband device, which serves as the
gateway to the Internet. However, the household’s network and devices

are not directly exposed to the Internet; instead, their Internet requests

are routed through the broadband device. This device uses NAT (Network
Address Translation) to map private IP addresses to a public one. However,
the reverse—accessing a device from the Internet—does not work by default
unless explicitly configured. With most broadband devices, a built-

in web server is available to control various network settings. Usually, the
first IP address on the network belongs to the broadband device. Entering
this IP into a browser typically brings up a configuration page, as shown in
Figure 9-1. While the interface may vary across devices, most offer options
to configure port forwarding or port mapping. On that page, we want to map
an internal IP and port to one of the broadband’s public-facing ports. Ideally,
we would map Streamlit’s default port 8501 to port 80, the default for HTTP.

224

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

* AN s | 12168300100 " * 4 H 0O 9 ¢
Fibre Gateway

Bt WAM LAN WLAN Seturfty Fureed Bl Mefwork Applestion Syiiem Took

Foorwan Fuims » Pot Magpng Comigauiion

Figure 9-1. Broadband’s configuration website

The next step is to find out the gateway’s public IP address. An easy
way to do this is by simply googling it, as shown in Figure 9-2. Essentially,
any website you visit can detect your public IP and display it back to you.
Once you have this IP, you can paste it into your browser’s address bar,
and—if everything is configured correctly—you will be presented with
your Streamlit application.

Go g|e what is my ip X 4 Q

Al Q Maps E] Images [+] Videos [E News t More Tools

300,000,000 results (0.47 seconds)

What's my IP

89 .1N.173

Your public IP address

— Learn more about IP addressas

Figure 9-2. Host’s public IP address

225

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

It is worth noting that the public IP is assigned by your ISP, which
typically rotates through a pool of IP addresses for its clients. This means
your public IP will eventually change—possibly every hour or when
the network reconnects. This dynamic behavior continues unless you
specifically request a static IP from your ISP, which ensures that your
broadband device is always assigned the same IP address, even if your
network goes offline temporarily.

9.1.2. HTTP Tunneling Using NGROK

The concept of tunneling is similar to establishing a VPN connection
between two devices, even if they are far apart and not on the same
network. Ngrok uses tunneling to allow private network devices to be
accessed by the public network for a short period (usually two hours). It
does this by allocating a temporary subdomain on their servers, which
forwards requests to your service and exposes it on your behalf. In short, a
Streamlit application running at http://127.0.0.1:8501 can be accessed
via a specific ngrok URL, which follows this format:

http://<random-uuid-here>.ngrok-free.app

Once the tunnel command is initiated by the Ngrok user, the
connection is established, and the Ngrok URL is provided. The user can
then share this URL with anyone to access their local Streamlit application
for the next few hours. After installing Ngrok on your computer, you can
run it by typing the following command into the CMD or terminal:

ngrok http <port to tunnel to>

where the <port_to_tunnel_to> block can be replaced with 8501 to tunnel
to the running Streamlit application. Listing 9-1 shows a simple Streamlit
application using an iframe to display the user’s public IP address. After
running ngrok on port 8501 in the CMD, the user is presented with the
allocated subdomain, as seen in Figure 9-3.

226

http://127.0.0.1:8501

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

The subdomain’s location is listed as the United States, as mentioned by
ngrok. However, when visiting a public IP website, it does not show the
United States as the origin, as seen in Figure 9-4. Instead, the IP displayed
is the user's original ID from Qatar, even though ngrok tunneled through
the United States. This is because ngrok is not a VPN but a network, and
the request to the page is routed through the Streamlit host machine.

Listing 9-1. main.py
import streamlit as st

st.title('Welcome, WWW')

url = "https://www.whatismyip-address.com'

script = f"""

<iframe src='{url}' height='500" width="500"'></iframe>
st.write(script, unsafe_allow html=True)
st.write(f'Check out your [public IP]({url})")

Figure 9-3. Ngrok dashboard after tunneling to port 8501

227

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Welcome, WWW Welcome, WWW

Mimip
What is my IP Address? @"Mlp

What is my IP Address?
IP Address: 78. 98
5P IP Address: 78. .98

City: Dok

Country: gaar [l

Timezone - Local time is 08:06 pm

Figure 9-4. Two browser windows, one being served locally and the
other by ngrok, and both showing the same client IP

9.2. Deployment to Streamlit Community
Cloud

Deploying a web application on the cloud can be a demanding task,
depending on your cloud service provider. Some, like Heroku, have made
it as simple as connecting your GitHub repository, installing build packs,
configuring the application, and launching it. Others require you to handle the
entire process, including setting up the virtual machine, creating containers,
configuring port forwarding, load balancing, and routing requests yourself.
Regardless, deploying to the cloud requires at least a basic understanding of
cloud computing concepts—after all, that is why we have DevOps engineers.
Streamlit, however, is democratizing this last frontier and making
deployment almost a one-click process. With Streamlit Cloud, you can
simply connect your GitHub repository and click deploy. Streamlit will
automatically provision the application with all its required dependencies
and update it each time you push a new version of your source code. No
additional intervention is required from the developer. Furthermore, if you

228

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

need more than one private application, additional computing resources,
or enterprise-grade features, you can upgrade to Streamlit's premium
packages.

9.2.1. One-Click Deployment

Before deploying your first application to Streamlit Cloud, you should
create a GitHub account and push your script to a repository. Once that is
done, you can follow these steps to deploy:

1. Navigate to share.streamlit.io, log in with your
GitHub account, and click New app.

2. Select the repository, branch, and file where your
source code is located. Then click Deploy! as shown
in Figure 9-5.

] mkhorasani ~ My apps My profile Explore

Deploy an app

Maln file path

hello_world.py

App URL (optional)

helio-warld-test-app steeamiit.app

Figure 9-5. Deploying an application to Streamlit Cloud (1)

3. Sitback and relax while Streamlit Cloud provisions
your application, as shown in Figure 9-6.

229

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Figure 9-6. Deploying an application to Streamlit Cloud (2)

4. And there you have it, your first application
deployed to Streamlit Cloud, as shown in Figure 9-7.

Hello world

Figure 9-7. Deploying an application to Streamlit Cloud (3)

230

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

9.2.2. Streamlit Secrets

Another benefit of using Streamlit Cloud is that you can securely store
private data on Streamlit’s servers and easily access it in your application.
This feature is particularly useful for storing user credentials, database
connection strings, API keys, and other passwords—without the risk of
exposing them in plain text within your code (which you should never do
under any circumstances). Instead, you can follow these steps to store and
access private data using Streamlit’s Secrets Management.

1. Navigate to share.streamlit.io and open the settings
for the application to which you want to add secrets,
as shown in Figure 9-8.

Get started from a template

...............

[——
Chatbot M

Figure 9-8. Adding secrets to Streamlit Cloud’s Secrets
Management (1)

2. Add your secrets in the form of a TOML file, as
shown in Figure 9-9.

231

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

App settings Secrets X
General
Sharing
secret = 'some_secret'’
Secrets
[section]
password = 'some_password’

Figure 9-9. Adding secrets to Streamlit Cloud’s Secrets
Management (2)

3. Access your secrets in your script using the st.
secrets command, as shown in the following and in
Figure 9-10:

Secret: some_secret
Password: some password

Figure 9-10. Using secrets in a Streamlit Cloud application
import streamlit as st
st.write('**Secret:**' st.secrets['secret'])

st.write('**Password:**' st.secrets['section’]
['password'])

232

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

4. Ifyouwish to replicate Secrets Management locally on
your own server, you can simply add the same TOML
file as secrets.toml in the .streamlit folder in your root
directory. Be sure to add this folder to your .gitignore
file to ensure that such files are not included in Git
commits.

9.3. Deployment to Linux

Most cloud providers specialize in offering virtual machine leases to
corporations and individuals for running services and apps in a Linux
environment. The strength of Linux lies in its ability to process at higher
speeds and make better use of computer resources due to its minimalistic
kernel layers. These factors make Linux the go-to choice for cloud
machines.

9.3.1. Native Deployment on a Linux Machine

With access to a Linux machine, such as Ubuntu WSL (Windows
Subsystem for Linux) run on Windows, you can run Streamlit through the
CLI as shown in Figure 9-11.

233

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Figure 9-11. Running Listing 9-2 in the terminal

The output of the Streamlit application in Listing 9-2 can be seen in
Figure 9-12.

Deployed on Linux (posix)

More details:

Figure 9-12. Output of Listing 9-2, showing the operating system
being Linux

234

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

To display the system platform running, you can run the script shown
in Listing 9-2.

Listing 9-2. main.py

import os
import platform
import streamlit as st

st.title(f'Deployed on {platform.system()} ({os.name})")
st.subheader('More details: ') st.write(f' {platform.
platform()} ")

9.3.2. Deployment with Linux Docker Containers

To avoid the hassle of running your Streamlit application in a specific
way—and for added security—you can use a Docker container to run it.
Docker allows you to host an application in any OS environment with

its own variables, applications, and services, while giving you control

over the computer resources it can access. Moreover, if the application

is compromised by a malicious actor, they are unlikely to escape the
Docker container and further compromise the host machine, provided the
container is configured correctly.

Now that we understand the benefits of deploying services in a
containerized environment, we can proceed to create Docker’s main file,
as shown in Listing 9-3. Assuming Docker is already installed, this file
initiates a Linux environment with Python 3.8 pre-installed, then creates
a folder to hold your Streamlit/Python files. Next, it copies your existing
requirements.txt file (as shown in Listing 9-4) into Docker’s working
directory, where the dependencies will be installed. Once Streamlit is
installed, the Docker container is instructed to expose port 8501 to allow
access from outside the container—this is Streamlit’s default port. Finally,
your Streamlit files are copied into the working directory and executed.

235

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Listing 9-3. Dockerfile
FROM python:3.10

Set working directory
WORKDIR /app

Install dependencies
COPY requirements.txt ./requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

Expose Streamlit port
EXPOSE 8501

Copy app files
COPY . /app

Add a simple healthcheck (tries to curl the Streamlit app
every 30s)
HEALTHCHECK --interval=30s --timeout=10s --start-period=
30s --retries=3 \

CMD curl -f http://localhost:8501/ stcore/health Il exit 1

Explicit entrypoint with host binding
ENTRYPOINT ["streamlit", "run", "main.py", "--server.
address=0.0.0.0"]

Listing 9-4. requirements.txt
streamlit==1.41.1 # Latest version as of writing this book

With our files ready, we need to build a custom Docker image
from our project—similar to what is shown in Figure 9-13—by running
the command in Listing 9-5 from the project’s root folder, where the
Dockerfile should reside.

236

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD
Listing 9-5. Building a Docker image

docker build -t <CUSTOM IMAGE NAME>:latest .

Figure 9-13. Building image and verifying its existence

Running the image is done by executing the code shown in Listing 9-6;
the -d option is to detach the process from the command line, similar to
the disown command in Linux. Figure 9-14 shows how the process is not
detached and therefore stops reusing the same command-line window.
Now we have a running container overriding the current machine’s port
8501 with its own, which means the Streamlit application can be visited
from localhost as seen in Figure 9-15.

You can run the image by executing the command shown in Listing 9-6.
The -d option detaches the process from the command line, similar to the
disown command in Linux. Figure 9-14 demonstrates what happens when
the process is not detached—it remains tied to the same command-line
window. Now, with a running container overriding the host machine’s port
8501 with its own, the Streamlit application can be accessed via localhost,
as shown in Figure 9-15.

237

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Listing 9-6. Making a container out of a Docker image

docker run -d -p 8501:8501 <CUSTOM IMAGE NAME>:latest

Figure 9-14. Running the Docker image

Deployed on Linux (posix)

More details:

Figure 9-15. Streamlit application running from a Docker container

238

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Finally, we can destroy the container, without affecting the image, by
running Listing 9-8. First, we need to know the container ID by running
Listing 9-7, then apply the stopping action as seen in Figure 9-16.

Listing 9-7. Displaying all running Docker container metadata

docker ps

Listing 9-8. Stopping a specific Docker container

docker stop <CONTAINER ID>

Figure 9-16. Checking active containers and closing a specific
container

9.4. Deployment to Windows Server

Given the corporate world's affinity for Microsoft, if you are deploying your
Streamlit application on a corporate server, chances are you will be using
Windows Server. Fortunately, the process to provision your application

is simple and straightforward. While this section focuses on Windows

239

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

Server, the steps can also be followed for deploying on a standard Windows
operating system. Before we proceed, however, we will make a few
assumptions: your corporate server is located remotely, and you only have
local Intranet access with no Internet connectivity. As a result, additional
steps will be required to overcome these assumptions, and these will be
explained in the following sections.

9.4.1. Establishing a Remote
Desktop Connection

As mentioned earlier, your server may be located remotely, and the most
likely way to connect to it will be through the Remote Desktop Protocol
(RDP). RDP provides a graphical user interface to access the remote

server over a network connection. The Microsoft client for RDP is Remote
Desktop Connection, as shown in Figure 9-17. To connect, enter the IP
address of the remote server in the Computer field, and if required, append
the domain to the username in the User name field in the format domain/
username. Then, click Connect, and you will be prompted to enter your
password to log in to the server.

240

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

% Remote Desktop Connection = X

| Remote Desktop
<) Connection

General Display Local Resources Experence Advanced

Logon settings
& Enter the name of the remole computer
i

Computer: IF_-:ample computer fabrkam.com v ‘

User name: [|

The computer name field is blank. Enter a full remote computer

name
Connection settings
Save the cument connection settings to an RDP file or open a
a saved connection.
Save Save As.. Open..
= e Coors o

Figure 9-17. Establishing a RDP connection to the remote server

Since your remote server might not have Internet access, you can use
RDP to transfer files from your local disk to the server by selecting the
Drives checkbox in the Local Resources tab, as shown in Figure 9-18. This
feature also allows you to provide access to other local resources, such as
I/0 devices and peripherals, on the server if needed.

241

CHAPTER 9

Figure 9-18. Transferring local resources to the remote server

DEPLOYING LOCALLY AND TO THE CLOUD

!’._“.. Remote Desktop Connection

| Remote Desktop
<) Connection

Local devices and resources

Choose the devices and resources on this computer that you want to
use in your remote session.

[Smart cards or Windows Hello for Business
[JPons

I+

@ []Video capture devices

@ [JOther supported Plug and Play (PnF) devices

[ok] Conce

9.4.2. Opening TCP/IP Ports

Before proceeding, make sure that all relevant inbound and outbound
TCP/IP ports on the server are open, allowing the Streamlit application to

be forwarded across the local network:

1.

242

Open Windows Defender Firewall with Additional
Security.

Select Inbound Rules or Outbound Rules in the
left pane.

Click New Rule in the right pane to open the New
Rule Wizard window.

Select the Port option and then click next as shown
in Figure 9-19.

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

o | B oo Rasrtn Sy o Vi s Vo des s dy
W e e Pk e o e W Foariar ol .
it Ty Fad T e
Bt 2 e el s sy L T T

o Ay oy
S oy aa,
o Mn e Pt npw v st gty e am =
- At y N
s e % -
* fw - P e Any
bl oyt coprmr Vo T 06 2ot - oy
o~ Ao
Mt M el
Pl o e o ey s Aoy
e By
Ca— dny
- Ly
" .
nnnnn amy
ey (e
- Ay P
L
g

e

Figure 9-19. Opening TCP/IP ports (1)

5. Select TCP and enter the port number that your
Streamlit application will be served on, for example,
8501, as shown in Figure 9-20.

243

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

& New Inbound Rule Wizard

Protocol and Ports

Soecfy the protocol and pots to which Ui rke acples

Stups:

& Fui Tyoo Dows thie re apoly to TCF or UDF?
@ Protocol and Fots ® 1CP

e Action 0 upP

e Prolie

@ Kame

Does this re apoly 1o al local ports or soeclic local pots?

) Ml local ports

@) Spedific local ports: 2501

Bxamohe: 80. 443. 50005010

e

Figure 9-20. Opening TCP/IP ports (2)

6. Select Allow the connection to serve the port to all
users, or alternatively select Allow the connection
if it is secure to serve the port to specific users, as
shown in Figure 9-21.

244

Cancel

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

W Now Inbound Rule VWizard

Aclion
Spochy e acaen 1o Bo takon whin 3 connoction matchse tho condiicns epechied nthe ruls

What action should bo takon when 2 comisccn matches the specfisd condozng?

(®) Mllow the connoction

@ Petion This includes comnections thal are protected wih Peec s well i thove are not.
] ™ i
¥ () Aliow the connection d it I3 socuro
L This ncludes only conrections et heve been subberticated by usng IPsec. Cornectors
wil b2 eocured Leng the ectnge i IPzoc crocormice andndice inthe Connacton Sacuty
Rue nade

() Block tho connoction

o] [

Figure 9-21. Opening TCP/IP ports (3)

7. Next, select Domain and Private to serve the port to
secure networks, as shown in Figure 9-22.

245

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

& New Intound Rule Wizard

Protie

Specty the profiles for which ths e aoples.

Steps:

@ R Tyoe Wren doas thie e apoly?

@ Pmtocol and Fots

e At [Doman

Aoples when 2 computer b connected 1o 23 comarate domain

o Pl
@ Nane M Pavate
Acplies when a computer i connected 1o 2 pivate network location, such as a hore
o wok place
] Public

Appies when a computer o conected 10 a publc network boation

< Back Cancel

Figure 9-22. Opening TCP/IP ports (4)

8. Finally, enter a name for your rule and follow the
same steps to open the same port for both inbound
and outbound communication.

9.4.3. Anaconda Offline Package Installation

Since your server may not have Internet access, you will not be able
to install Python packages and their dependencies using Pip as usual.
Instead, you will need to perform an offline installation by following

these steps:

1. Open Anaconda Prompt on a computer with access
to the Internet.

246

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

To download the required Python package with

all of its related dependencies, type the following
command, specifying the file path of where to save
the package:

pip download <package name> -d '<folder path>'

Once the package has been downloaded, zip the
files and transfer them to the server using RDP or
any other available method.

Unzip the files and type the following command into
Anaconda Prompt on the server to change the root
directory to the location where the package is stored:

cd <folder path>

Enter the following command into Anaconda
Prompt to initiate an offline installation of the
required package:

pip install <package name> -f ./ --no-index

9.4.4. Adding Anaconda to System Path

To run your Streamlit application as an executable batch file (explained in

the following section), you first need to add Anaconda or any other Python

interpreter of your choice to the system path in Windows. Follow these steps:

1.

Determine the location of Anaconda.exe by typing
the following command into Anaconda Prompt:

where anaconda

Open the Windows search bar and select Edit the
system environment variables.

247

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

3.

Once the System Properties window opens, click the
Advanced tab and select Environment Variables.

Next, highlight Path and click Edit to add the path
for Anaconda, as shown in Figure 9-23.

ZUSERPROFILE®:\AppData\Local\Microsoft\WindowsApps New
C:\ProgramData\Anaconda3\
C:\ProgramData\Anaconda3\Scripts Edit
Ch\Users\S003001\AppData'\Local\GitHubD esktop\bin
Browse...
Delete
Maove Up
Maove Dgwn
Edit text...

Figure 9-23. Adding Anaconda to the system path

248

5.

If the necessary paths do not already exist, add
the path that was found in step 1 by entering the
following two:

C:\...\Anaconda3\
and

C:\...\Anaconda3\Scripts\

6.

9.4.5.

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

To verify that Anaconda has been successfully
added to the system path, open Windows Command
Prompt and type anaconda. If Anaconda has not
been added, an error will appear. Otherwise, you
should be able to use any Anaconda command,
such as conda list.

Running Application As an Executable
Batch File

To run your Streamlit application as a Windows service (explained in the

following section), you first need to create an executable batch file. Batch

files are similar to .exe files and can be run by double-clicking, just like

any other application. Follow these steps to create a batch file for your

Streamlit application:

1.

Open notepad or any other text editor of
your choice.

Type the following commands on separate lines:

call activate <environment name>
cd <folder path>

streamlit run <script name.py>
pause

Save the file with a .bat extension to create the
batch file.

Run the batch file to ensure that the application
launches as expected.

249

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

9.4.6. Running Application As a Persistent
Windows Service

The final step in preparing for deployment on Windows Server is to run
your Streamlit application persistently as a Windows service. While you
can still serve it as you would normally with any Streamlit application,
running it as a Windows service offers several benefits, including the
following:

1. Your application will be run in the background
without opening a console.

2. The application will remain independent of the RDP
session, ensuring it continues to run even when the

RDP connection is terminated.

3. You can schedule your application to run on
Windows startup or based on any other trigger.

For a robust setup, consider using a tool like NSSM (the Non-Sucking
Service Manager). NSSM allows you to run any executable, such as
python.exe running your Streamlit app, as a Windows service. It provides
better control over logging, process priority, and automatic restarts,
making your deployment more reliable and easier to manage.

250

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

To configure your application as a persistent Windows service, please
follow these steps:

1. Open Windows Task Scheduler and click Create Task
on the right pane, as shown in Figure 9-24.

Taikt St [l Actions

Cryarvagm of Tk Schaciule

T Status

Figure 9-24. Running application as a persistent Windows
service (1)

2. Enter a name for the task, then select the Run
whether user is logged on or not and Run with highest
privileges options, as shown in Figure 9-25.

251

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

(5 Create Task

General Triggers Actions Conditions Settings
| Name: Streamlit_application

| Location: \
Author: LAPTOP-T6KUTEBS\Mohammad Khorasani

Description:

Security options

When running the task, use the following user account:

LAPTOP-TEKUTEBE&\Mohammad Khorasani Change User or Group...

(O Run only when user is logged on
® Run whether user is logged on or not

[[] Do not store password. The task will only have access to local computer resources.

[Run with highest privileges

[] Hidden Configure for Windows Vista™, Windows Server™ 2008

Figure 9-25. Running application as a persistent Windows
service (2)

3. Navigate to the Actions tab and select Start a
program from the action menu, then browse to
the location of the batch file you created for your
Streamlit application (explained in the previous
section), as shown in Figure 9-26.

252

Cancel

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

You must specify what action this task will perfform.

Action: Start a program
Settings
Program/script:

Ch\Users\Desktop\Streamiit_spplication bat Browse...
Add arguments (optional)

Start in (optional):

Figure 9-26. Running application as a persistent Windows service (3)

4. Open the Task Scheduler Library on the left pane,
select your created task in the list, and select Run on
the right pane, as shown in Figure 9-27.

Tank Sehvectu Litsury

Figure 9-27. Running application as a persistent Windows service (4)

253

CHAPTER9 DEPLOYING LOCALLY AND TO THE CLOUD

5. To verify that your Windows service task has been
configured successfully, terminate the RDP session.
Then, open a browser on another device on the local
network and navigate to the network URL of your
Streamlit application to check if it's running.

9.5. Summary

In this chapter, we explored how to expose our Streamlit application to
the Internet through port forwarding via a network gateway, as well as
leveraging HTTP tunneling with ngrok. We then introduced Streamlit's
cloud platform, Streamlit Cloud, which simplifies the deployment process.
With Streamlit Cloud, developers can deploy their applications with just a
click by connecting their GitHub repository. Additionally, we learned how
to securely integrate private data into our applications using Streamlit's
Secrets Management, both locally and in the cloud. Finally, we covered the
process of deploying our applications to Linux containers and Windows
Server, which are the foundation of most remote servers worldwide. With
that, we have completed the entire development-to-deployment life cycle
of a Streamlit application.

254

CHAPTER 10

Building Streamlit
Components

Streamlit continuously expands its feature set to offer developers new
capabilities with just a few lines of code. However, there comes a time
when developers need to customize their applications to meet specific
user needs. Whether it is modifying the user interface or providing a
tailored user experience, Streamlit allows developers to create custom
components as needed. Moreover, Streamlit supports the use of React]S
to build components that can either function as a live web server or be
deployed with production-ready code. In this chapter, we will guide you
through the process of creating custom Streamlit components, integrating
them into a Pythonic context, and sharing them with the broader
community.

10.1. Introduction to Streamlit
Custom Components

Fundamentally, Streamlit acts as a backend server, delivering web

page updates to client browsers using DG. While HTML and JavaScript
can be generated by various web frameworks, Streamlit is capable of
serving components from any web application framework. For instance,

frameworks like React]S allow developers to code in JSX, which is then

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 255
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_10

https://doi.org/10.1007/979-8-8688-1826-4_10#DOI

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

compiled into a combination of static files that can be served from disk.

In a production environment, it is highly recommended to serve static
files from disk, as shown in Figure 10-1. However, Streamlit also allows

for components hosted locally. The trade-off here is that the component,
when imported into a Streamlit app, may behave differently. For example,
if you print the current URL from the custom component, it will not reflect
the same URL where the Streamlit application is hosted.

3 : . Server Side and . x
Kellant Ske : Network Infrastructure : sonver Dlsk

http:/127.0.0.1:8501

Custom component X
Native Component 1

Streamlit Server Custom component Y

Native Component 2

l Custom component Z

Figure 10-1. How custom components are served through Streamlit

10.2. Using ReactJS to Create Streamlit
Custom Components

In this section, we will demonstrate how to create a React]JS-based
component for use in Streamlit. Additionally, we will showcase how to
facilitate bidirectional data sharing between Streamlit and the component.
This feature can be used to send initial values, trigger user actions, or even
pass styling themes and colors to the custom component.

256

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

10.2.1. Making a ReactJS Component

To begin, you need to install Node.js and npm from NodeJS.org. After

that, we will use Streamlit’s official GitHub template to create custom
components. In this subsection, we will walk through the process of
building a React]S component. For this example, we will create a rating
stars widget, as shown in Figure 10-2, using React]S. The React]S developer
community is significantly larger than that of other frameworks, making it
avaluable investment to create components within this ecosystem.

Figure 10-2. Interactive rating star view from Material Ul

By copying the content from component-template/template/my
component into our working directory, we will set up a React]S application
with a single file module located at src/MyComponent . tsx. This is the file
we need to modify to create our rating star component. The changes made
to this file will result in the code shown in Listing 10-1.

Listing 10-1. stars_demo/rating_stars/frontend/src/
CleanedTemplate.tsx

import {
Streamlit,
StreamlitComponentBase,
withStreamlitConnection,
} from 'streamlit-component-1lib'
import React, { ReactNode } from 'react’
interface State {}
class MyComponent extends StreamlitComponentBase<State> {
public state = {}

257

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

public render = (): ReactNode => {
return (

<div></div>

)
}

}
export default withStreamlitConnection(MyComponent)

Use the following command to install the Material Ul library:
npm i @mui/material

Then run the following command to install other packages in the
package.json file:

npm i

After running both commands, make sure to change the name in
package.json to be your component’s reference name in Streamlit down
the road as shown in Listing 10-2.

Listing 10-2. Updated Package.json
{

"name": "rating star",
"version": "0.1.0",
"private": true,
"dependencies": {
"@mui/material": "°5.0.6",

1
"scripts": ...,
"eslintConfig": ...,
"browserslist": ...,
"homepage" :

258

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

With the necessary packages in place and a basic understanding of
JavaScript/TypeScript (or with a bit of googling), we can begin creating
our first React]S module to be used as a custom Streamlit component. We
will modify Listing 10-1 to display the rating stars, as documented on the
Material UI website. The final result will be the content shown in Listing 10-3,
which should reside in frontend/src/. Also, do not forget to update the
file to run in index.tsx.

Listing 10-3. Initial version of RatingStar.tsx

import {

Streamlit,

StreamlitComponentBase,

withStreamlitConnection,
} from 'streamlit-component-1lib’
import React, { ReactNode } from 'react’
import { Rating } from '@mui/material’;
interface State {}
class RatingStar extends StreamlitComponentBase<State> {

public state = {}

public render = (): ReactNode => {

return (

<Rating size='large' defaultValue={3} />
)
}

}
export default withStreamlitConnection(RatingStar)

259

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

10.2.2. Using a ReactJS Component in Streamlit

To prepare the React application, run the following command. If any errors
appear regarding missing packages, install them using the command
provided earlier.

npm start

Now, on Streamlit's side, we will integrate the running ReactJS
application as a component by using Streamlit’s API for including external
components. Before doing that, we need to populate the __init .pyfile,
as shown in Listing 10-4.

Listing 10-4. Initial version of __init__.py

import os

import streamlit.components.vl as components

IS RELEASE = False

if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare_component('rating
stars', path=build path)

else:
_component_func = components.declare_component('rating
stars', url="http://localhost:3001")

def rating stars():
_component_func()

The previous code snippet uses a live component running locally on
port 3001, which, in this case, refers to the React]S app. It then exposes a
function to be used by any other Python source, allowing it to be run as a
Streamlit module. Running Listing 10-5 with Streamlit’s CLI tool will result
in the output shown in Figure 10-3.

260

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-5. Initial version of main.py

import streamlit as st

from rating stars import rating stars
st.title('Rating stars demo! ")
rating stars()

Rating stars demo!

Figure 10-3. First custom component!

Having accomplished that, we successfully displayed a live React]S
application within the Streamlit context. However, as we become more
creative and develop additional custom components, it could become
cumbersome to navigate to each component’s folder and run it as a
React]S application before launching the Streamlit app. This approach
may also lead to running out of ports, as each custom component requires
its own unique local URL. To overcome this, we can build the React]S
application into static files after development by running

npm run build

Once you run the build command, a new folder named build will
appear inside the frontend folder. This folder will contain the necessary
JavaScript, CSS, and HTML files required by Streamlit to load the
component into an application. After building the static version of the
component, you need to set IS _RELEASE to True, which will instruct
Streamlit to load the custom component from the frontend/build/ folder.
This process is illustrated in Figure 10-1.

261

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

10.2.3. Sending Data to the Custom Component

At this point, we can display React]S applications within a Streamlit
context, though without a communication mechanism between the
frontend and backend. In the next section, we will demonstrate how to
send dynamic data from Streamlit to React]S, enabling the transmission of
information with each rerender. This will allow Streamlit to send data to
the React]S application whenever the app is updated.

To enhance the functionality of our rating star custom component,
we will add support for setting the total star count and the number of
selected stars, all through Streamlit's Python code. First, it is important to
understand that Streamlit converts the parameters passed from Python
(via _component_func) into properties in React]S. Therefore, our goal is to
refactor the component's _init__ .py file to accept these new parameters,
as shown in Listing 10-6, and then read them in RatingStar.tsx, where they
will be assigned to the view's properties, as demonstrated in Listing 10-7.

Listing 10-6. Second version of __init__.py

import os

import streamlit.components.vl as components

IS RELEASE = False

if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare component('rating
stars', path=build path)

else:
_component_func = components.declare component('rating

stars', url="http://localhost:3001")

def rating stars(stars count: int, selected: int):
_component_func(stars_count=stars_count, selected=selected)

262

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-7. Second version of RatingStar.tsx

import {
Streamlit,
StreamlitComponentBase,
withStreamlitConnection,
} from 'streamlit-component-1lib'
import React, { ReactNode } from 'react’
import { Rating } from '@mui/material’
interface State {}
class RatingStar extends StreamlitComponentBase<State> {
public state = {}
public render = (): ReactNode => {
const {selected, stars count} = this.props.args
return <Rating size='large' defaultValue={selected}
max={stars_count}/>

}

}
export default withStreamlitConnection(RatingStar)

To put this update into action, we will create a Streamlit application
as shown in Listing 10-8, which demonstrates both native and custom
components side by side. Figure 10-4 illustrates the seamless integration
between our newly created configurable component and the default
components provided by Streamlit.

Listing 10-8. Second version of main.py

import streamlit as st

from rating stars import rating stars

st.title('Rating stars demo! ')

total stars = st.slider(label='Total Stars', min_
value=0, max_value=20, value=10, step=1) selected stars =

263

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

st.slider(label="'Selected Stars', min value=0, max_value=total
stars, step=1) rating stars(total stars, selected stars)

Rating stars demo!

L]

Figure 10-4. Using native and custom components

10.2.4. Receiving Data from the Custom
Component

After experimenting with the sliders to configure our custom rating
component, it becomes apparent that the Streamlit application's view
becomes cluttered with additional widgets solely used to control another
view’s behavior. Ideally, users should be able to set the number of selected
stars simply by hovering over and clicking them. To enable this, however,
the Streamlit application needs to be aware of the selected value—and this
is where data retrieval from custom components comes into play.

Streamlit not only provides an API to embed React]S applications but
also enables bidirectional communication between Streamlit and these
components. Sending data from React]S back to Streamlit can be achieved
using a library that is already included in the component template’s
package.json. While this library offers several React]S-specific actions, we
will focus on the Streamlit.setComponentValue function. This function
allows us to set the return value of a component in the Streamlit Python
context based on the parameter passed to it.

264

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

To implement this, we will add the function call within the rating
component’s callback in React]S, as shown in Listing 10-9. Then, we will
update the init .py file accordingly to propagate the return value back
to the running Streamlit script, as shown in Listing 10-10.

Listing 10-9. Final version of RatingStar.tsx

import {
Streamlit,
StreamlitComponentBase,
withStreamlitConnection,
} from 'streamlit-component-1lib’
import React, { ReactNode } from 'react’
import { Rating } from '@mui/material’
interface State {}
class RatingStar extends StreamlitComponentBase<State> {
public state = {}
public render = (): ReactNode => {
const { selected, stars count } = this.props.args
return (
<Rating
size="large'
defaultValue={1}
max={stars_count}
onChange={(_, stars_count) => Streamlit.
setComponentValue(stars count)}
/>
)
}

}
export default withStreamlitConnection(RatingStar)

265

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-10. Final version of __init__.py

import os

import streamlit.components.vl as components

IS RELEASE = False

if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare component('rating
stars', path=build path)

else:
_component_func = components.declare component('rating
stars', url="http://localhost:3001")

def rating stars(stars count: int):
stars selected = component func(stars count=stars count)
if stars_selected is None:

stars_selected = 0

return stars selected

In our main Streamlit file, we remove the slider used to select the star
count and replace it with the output of our custom component. Finally,
we display the selected number of stars on the application, as shown in
Listing 10-11, with the output illustrated in Figure 10-5.

Listing 10-11. main.py, Streamlit file to be run

import streamlit as st
from rating stars import rating stars

st.title('Rating stars demo!")

total stars = st.slider(label='Total Stars', min value=0,
max_value=20, value=10, step=1) selected stars = rating
stars(total stars)
st.write(str(selected stars) +

star(s) have been selected')

266

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Rating stars demo!

Total Stars

13 star(s) have been selected

Figure 10-5. Result of communicating back and forth with a custom
Streamlit component

10.3. Publishing Components
As Pip Packages

Once you create your first custom component, you will likely want to share
it with friends or contribute it to the open source community, as many
developers do. Simply sending a zip file of the source code or uploading
the component to a version control service like GitHub may not be the
most scalable solution to reach a large number of developers. This method
can add unnecessary overhead for others to get it up and running.

A more developer-friendly and professional way to share Python
packages is by compressing them into a pip wheel format. This format can
be easily installed in the Python interpreter by running

pip install <PIP_PACKAGE NAME>.whl

Continuing with the example in this chapter, we do not need to install
any additional packages to accomplish this, as Python natively supports
wheel building. The goal is to package the rating_stars/ folder into a file
that can then be installed and referenced from any script, just like a local
package.

Building a pip file is as simple as running the following command:

python setup.py sdist bdist wheel

267

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Before creating the pip wheel, ensure that the React]S part of the
custom component is built, as it won't be run live on the user's end.
Instead, it should offer a seamless plug-and-play experience with the
new component. To do this, navigate to the rating stars/frontend/
directory and run

npm run build

However, the wheel builder requires additional information, such
as the exact folder to package and other metadata, including the version
number and description. There is no need to explicitly mention the folder
to be packaged, as Python automatically looks for all Python packages in
the current directory. For a folder to be recognized as a Python package,
itmust containan __init__.py file, which we already have. However, by
default, the wheel builder does not include non-Python files and folders
unless they contain at least one Python file. This becomes an issue in our
case because our component relies on the React]S build folder, which
contains the necessary static web files. To resolve this, we need to add a
new file, as shown in Listing 10-12, in the project’s root directory. This will
ensure the inclusion of the build folder and its contents.

Listing 10-12. MANIFEST.in
recursive-include rating stars/frontend/build *

Now that we have half of the requirements for creating a pip wheel,
we can address the final part by creating a setup.py file with the content
shown in Listing 10-13. This file should be placed in the same folder as
the MANIFEST.in. The setup.py file will include the version number of
your custom component, a description, and other details, such as the pip
download name if the package is uploaded to pypi.org.

268

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-13. setup.py

import setuptools
setuptools.setup(
name='rating stars',
version='0.1",
author="YOUR-NAME"',
author_email="'YOU-EMAIL@DOMAIN.com',
description="INSERT-DESCRIPTION-HERE",
long description="INSERT-LONGER-DESCRIPTION-HERE",
packages=setuptools.find packages(),
include package data=True,
classifiers=[
"Programming Language :: Python :: 3',
"License :: OSI Approved :: MIT License',
'Operating System :: 0S Independent’,

1,
keywords=['Python', 'Streamlit', 'React', 'JavaScript’,
"Custom'],

python requires='>=3.6",
install requires=[
'streamlit >= 0.86"',

1,

And for better dependency management and Streamlit Cloud
integration we need to create a pyproject.toml file as shown in
Listing 10-14.

269

http://setup.py

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Listing 10-14. pyproject.toml

[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build meta"

[project]
name = "rating stars”
version = "0.1"
authors = [{name = "YOUR-NAME", email = "YOU-EMAIL@DOMAIN.com"}]
description = "INSERT-DESCRIPTION-HERE"
requires-python = ">=3.6"
dependencies = [
"streamlit>=0.86",
]
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: 0S Independent”,
]

keywords = ["Python", "Streamlit", "React", "JavaScript", "Custom"]

After running the Python package command, three new folders will
appear in the project's root directory, as shown in Figure 10-6. The file
of interest is the rating stars-0.1-py3-none-any.whl in the second
folder. This file can be sent to others and easily installed, provided that the
package requirements are met. The other created folders also have their
benefits. For example, the dist/ folder can be used by twine, the tool for
uploading pip wheels to the global pip repository. If you wish to share your
package with the public, sign up at pypi.org and then run the following

command:

python -m twine upload dist/* --verbose

270

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

after building the wheel to upload it.

v B build
B bdist.win-amdéd
v mlb
v EH rating_stars
~ I8 frontend
v [build
> I static
£§) asset-manifest.json
‘f‘ bootstrap.min.css
sis index.html
j'f precache-manifest. 14b4d76d541add 368d01e5e8712a142¢5
- service-worker.js
A ~nit_.py
v W dist
i rating_stars-0.1.tar.qz

i rating_stars-0.1-py3-none-any.whl

~ L3 rating_stars
> [frontend
= _init_.py
v 1 rating_stars.egg-info
dependency_links.txt
® PKG-INFO
#® requires.txt
SOURCES.txt
& top_level.txt

[~ main.py
MANIFEST.in
i setup.py

Figure 10-6. New folders after building the custom component

271

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

10.4. Component in Focus:
Extra-Streamlit-Components

Streamlit, as a framework;, is continuously evolving. However, it may not
always provide certain bespoke features needed for a production-ready
web application. Features like application routing, custom URLSs for multiple
views, or saving user-related data on the browser side may not be natively
supported. Additionally, you might want to offer a unique look and feel for
your application or add widgets that are not yet part of Streamlit’s
standard library. When it comes to components, the possibilities are
endless. In this chapter, we will introduce Extra-Streamlit-Components
(STX), an open source collection of sophisticated Streamlit components
and services. We will also dive into how each subcomponent is built from
both the Streamlit and React]S perspectives, hoping to inspire creative
developers to build their own unique components.

10.4.1. Stepper Bar

This component is inspired by Material UI's Stepper. As previously
mentioned, React]S's developer community offers a wide range of

useful components that can be seamlessly integrated into the Streamlit
ecosystem. The stepper bar, in particular, can be highly beneficial for most
Streamlit applications, especially those that involve sequential steps in

a data science workflow. It allows users to navigate through stages in a
specific order. The stepper is a simple component that returns the index
of the stage the user has reached, as demonstrated in Figures 10-7, 10-8,
and 10-9. As a developer, you are not limited to just three phases. You can
provide a list of tab names, and the component will return the index of the
selected item, as shown in Listing 10-15. The numbering and animations
are already handled for you.

272

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Stepper Bar

@ 2] 2]

Phase #0

Figure 10-7. Stepper bar phase 3
Stepper Bar
@ 2] o

Ready

Phase #1

Figure 10-8. Stepper bar phase 3

Stepper Bar
@ o (3]

Ready Get Set

Phase #2

Figure 10-9. Stepper bar phase 3

On the React]S side, the stepper package needs to be installed via
npm and then imported into the source file, as shown in Listings 10-15
and 10-16. This file is responsible for detecting user clicks, returning the
corresponding index of the current step, and managing the theme of each
step based on the user's position within the sequence.

273

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Listing 10-15. StepperBar/frontend/src/StepperBar.jsx

import {
Streamlit,
StreamlitComponentBase,
withStreamlitConnection,
} from 'streamlit-component-1lib'
import React from 'react’
import { withStyles, createStyles } from '@material-ui/
core/styles’
import Stepper from '@material-ui/core/Stepper’
import Step from '@material-ui/core/Step'
import Steplabel from '@material-ui/core/Steplabel’
const styles = createStyles((theme) => ({
root: {
width: '100%',
backgroundColor: 'transparent',
})
icon: {
color: 'grey',
cursor: 'pointer’,
"8factivelcon': {
color: '#f63366',
}’
"&$completedIcon’: {
color: '#f63366',

}s
1

activeIcon: {},
completedIcon: {},

1)

274

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

class StepperBar extends StreamlitComponentBase {
state = { activeStep: 0, steps: [] }
componentDidMount() {
this.setState((prev, state) => ({
steps: this.props.args.steps,
activeStep: this.props.args.default,
})
}
onClick = (index) => {
const { activeStep } = this.state
if (index == activeStep + 1) {
this.setState(
(prev, state) => ({
activeStep: activeStep + 1,
})J
() => Streamlit.setComponentValue(this.state.
activeStep)
)
} else if (index < activeStep) {
this.setState(
(prev, state) => ({
activeStep: index,
1)
() => Streamlit.setComponentValue(this.state.
activeStep)
)
}
}
getlabelStyle = (index) => {
const { activeStep } = this.state
const style = {}

275

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

if (index == activeStep) {
style.color = '#f63366'
style.fontStyle = 'italic'
} else if (index < activeStep) {
style.color = '#f63366'
style.fontWeight = 'bold'

} else {
style.color = 'grey'
}
return style
}
render = () => {
let { classes } = this.props

const { activeStep } = this.state

const steps = this.state.steps

return (

<div className={classes.root}>
<Stepper

activeStep={activeStep}
alternativelabel
className={classes.root}

{steps.map((label, index) => (
<Step key={label} onClick={() => this.
onClick(index)}>
<Steplabel
StepIconProps={{
classes: {
cursor: 'pointer’,
root: classes.icon,

276

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

active: classes.activelcon,
completed: classes.completedIcon,

b
1}

>
<p style={this.getlLabelStyle(index)}>{label}</p>
</StepLabel>
</Step>
)}
</Stepper>
</div>
)
}

}
export default withStreamlitConnection(withStyles(styles)

(StepperBar))

Listing 10-16. StepperBar/__init__.py

import os

import streamlit.components.vl as components

from streamlit.components.vi.components import CustomComponent

from typing import List

from extra_streamlit components import IS RELEASE

if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare component('stepper
bar', path=build path)

277

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

else:
_component_func = components.declare component('stepper
bar', url="http://localhost:3001")

def stepper bar(steps: List[str]) -> CustomComponent:
component_value = component_func(steps=steps, default=0)
return component value

10.4.2. Bouncing Image

This component provides zooming animations for an image with a
bouncing effect. It can be useful during loading moments or as a splash
screen. While it may not be a frequently used component, when needed,
parameters like animation duration, control switches, and dimensions
are essential for its functionality, as seen in Listing 10-17. The React]S side
is slightly more complex than the Python side, as it manages animation
cycles and reports the widget's state back to Streamlit with each cycle.
Although JavaScript is not the primary focus of this book, Listing 10-18
should be relatively straightforward to understand. The final result will
resemble something like Figure 10-10.

Listing 10-17. Bouncinglmage/__init__.py

import os

import streamlit.components.vl as components

from extra streamlit components import IS RELEASE

if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare component('bouncing_
image', path=build path)

278

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

else:
_component_func = components.declare component('bouncing_
image', url="http://localhost:3001")
def bouncing image(image source: str, animate: bool, animation_
time: int, height: float, width: float):
_component_func(image=image source, animate=animate,
animation_time=animation time, height=height, width=width)

Listing 10-18. Bouncinglmage/frontend/src/Bouncinglmage.jsx

import {
Streamlit,
StreamlitComponentBase,
withStreamlitConnection,
} from 'streamlit-component-1ib’
import React from 'react’
import { withStyles, createStyles } from '@material-ui/
core/styles’
import Grow from '@material-ui/core/Grow'
import CardMedia from '@material-ui/core/CardMedia’
const styles = createStyles((theme) => ({
root: {
height: 180,
})
container: {
display: 'flex',
})
paper: {
margin: 1,

1

279

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

svg: {
width: 100,
height: 100,
b
polygon: {

fill: 'white’',
stroke: 'red',
strokeWidth: 1,

1
H)

class BouncingImage extends StreamlitComponentBase {
state = {
animationTimeRoundTrip: 1750,
isAnimating: true,
keepAnimating: false,
}
constructor (props) {
super (props)
}
componentDidMount() {
const { animation time, animate } = this.props.args
Streamlit.setComponentValue(animate)
this.setState(
0=«
animationTimeRoundTrip: animation_time,
keepAnimating: animate,

¥
0 =
setInterval(
()=

this.state.keepAnimating &&

280

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

this.setState(
0=
isAnimating:
Ithis.state.isAnimating && this.state.
keepAnimating,
}>
() => Streamlit.setComponentValue(this.state.
keepAnimating)
)s

this.state.animationTimeRoundTrip / 2

)
}

render = () => {
const isAnimating = this.state.isAnimating
let {
classes,
args: { image, height, width },
} = this.props
return (
<div className={classes.root}>
<div className={classes.container}>
<CGrow
in={isAnimating}
style={{ transformOrigin: 'o 0 o' }}
{...(isAnimating
? { timeout: this.state.
animationTimeRoundTrip / 2 }

s {h}

281

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

<CardMedia image={image} style={{ height, width }} />
</Grow>
</div>
</div>
)
}

}
export default withStreamlitConnection(withStyles(styles)

(BouncingImage))

Bouncing Image

Wy Streamlit

Figure 10-10. Bouncing image demo (a snapshot from the zoom
animation,)

10.4.3. Tab Bar

Instead of using a Streamlit column widget to host multiple buttons that act

as a tab bar, you can leverage this custom component. It organizes the title,
description, and ID of each button in a clean and structured way. Additionally,
it provides a horizontal scroll view when the tabs exceed the window's width,
ensuring a seamless user experience. Figures 10-11 and 10-12 demonstrate
the behavior when a tab button is clicked and the resulting output in
Streamlit. To create the tabs, you need to pass a list of specific Python objects,
as shown in Listing 10-20. These objects will then be converted into JSON and
processed by the TypeScript React]S component in Listing 10-19.

282

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Listing 10-19. TabBar/frontend/src/TabBar.tsx

import {

Streamlit,

StreamlitComponentBase,

withStreamlitConnection,
} from 'streamlit-component-1lib'
import React, { ComponentProps, ReactNode } from 'react’
import ScrollMenu from 'react-horizontal-scrolling-menu'
interface State {

numClicks: number

selectedId: number

}

interface MenuItem {
id: number
title: string
description: string

}

class TabBar extends StreamlitComponentBase<State> {
public state = { numClicks: 0, selectedId: 1, list: [] }
constructor(props: ComponentProps<any>) {
super (props)
this.state.list = this.props.args['data’]
this.state.selectedId = this.props.args['selectedld']
}
MenuItem = ({ item, selectedId }: { item: MenuItem;
selectedId: number }) => {

return (
<div className={'menu-item ${selectedId == item.id ?
Ilactivell : Illl}l}>

<div>{item.title}</div>

283

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

<div style={{ fontWeight: 'normal', fontStyle:

"italic' }}>
{item.description}
</div>
</div>

)
}

Menu(list: Array<MenuItem>, selectedId: number) {
return list.map((item) => (
<this.MenuItem item={item} selectedId={selectedId}
key={item.id} />
)
}

Arrow = ({ text, className }: { text: string; className:
string }) => {
return <div className={className}>{text}</div>
}
ArrowLeft = this.Arrow({ text: '<', className:
"arrow-prev' })
ArrowRight = this.Arrow({ text: '>', className:
"arrow-next' })
public render = (): ReactNode => {
return (
<div>
<ScrollMenu
alignCenter={false}
data={this.Menu(this.state.list, this.state.
selectedId)}
wheel={true}
scrollToSelected={true}
selected={"'${this.state.selectedId}"'}

284

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

onSelect={this.onSelect}
/>
<hr
style={{
borderColor: 'var(--streamlit-primary-color) ',
1}
/>
</div>
)
}
onSelect = (id: any) => {
this.setState(
(state, props) => {
return { selectedId: id }
})
() => Streamlit.setComponentValue(id)
)
}

export default withStreamlitConnection(TabBar)

Listing 10-20. TabBar/__init__.py

import os

import streamlit.components.vi as components

from dataclasses import dataclass

from typing import List

from extra streamlit components import IS RELEASE
if IS RELEASE:

absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare component('tab bar’,
path=build path)

285

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

else:
_component_func = components.declare component('tab bar’,
url="http://localhost:3001")
@dataclass(frozen=True, order=True, unsafe_hash=True)
class TabBarItemData:
id: int
title: str
description: str
def to dict(self):
return {'id': self.id, 'title': self.title,
"description’: self.description}
def tab bar(data: List[TabBarItemData], default=None, return_
type=str, key=None):
data = list(map(lambda item: item.to dict(), data))
component_value = component_func(data=data,
selectedId=default, key=key, default=default)
try:
if return type == str:
return str(component value)
elif return_type == int:
return int(component value)
elif return_type == float:
return float(component value)
except:
return component_value

286

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Tab Bar

Figure 10-11. Tab bar with first element selected

Tab Bar

hosen_id = 2, type = <class "int">

Figure 10-12. Tab bar with first element selected

10.4.4. Cookie Manager

This concept was introduced in the previous chapter as a black box

that simply stores data on the client browser side. However, the Cookie
Manager is more than just a custom component; it also serves as a Python
service. It handles data management in a Pythonic context, with CRUD
operations on a React]S-based component. If you are a web developer,
you are likely familiar with setting cookies on the client side, which is
straightforward. Fortunately, in Streamlit, we can write both server-side
and client-side code within the same script. By creating a React custom
component, we can execute it on the browser and set it up to control
cookies on the client’s side, as shown in Figure 10-13.

287

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

Felch me all cookies

Here yougo {... . }--=----ssmsensnes

Server Side

Client Side

Figure 10-13. Using Streamlit to control client-side data

By leveraging the knowledge introduced in this chapter, we can
establish bidirectional communication between Streamlit's server-side
and the custom React]S component running on the client's browser. This
enables us to instruct the component to gather, delete, or add cookies on
the browser and even listen for any return values. Starting with the React]S
side, as shown in Listing 10-21, we first read the expected arguments, such
as the required operation and the data to act on. Based on these inputs,
we perform the necessary actions on the cookies using the npm package
universal-cookie, and finally, we send back a response indicating the
status of the operation.

On the Python side, Listing 10-22 encapsulates the entire
communication method with the browser's component. It also stores all
cookies in memory for the user once initialized to reduce network traffic.
However, if the class's constructor is not cached after the initial run, it will
not provide any added value, as it will be executed each time Streamlit
reruns. Therefore, it is recommended to use the snippet in Listing 10-23
when implementing the Cookie Manager. Figure 10-14 demonstrates this
custom component in action.

288

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-21. CookieManager/frontend/src/CookieManager.tsx

import {
Streamlit,
ComponentProps,
withStreamlitConnection,
} from 'streamlit-component-1lib'
import React, { useEffect, useState } from 'react’
import Cookies from 'universal-cookie'
let last_output = null
const cookies = new Cookies()
const CookieManager = (props: ComponentProps) => {
const setCookie = (cookie, value, expires at) => {
cookies.set(cookie, value, {
path: '/",
samesite: 'strict',
expires: new Date(expires at),
1))
return true
}
const getCookie = (cookie) => {
const value = cookies.get(cookie)
return value
}
const deleteCookie = (cookie) => {
cookies.remove(cookie, { path: '/', samesite: 'strict' })
return true
}
const getAllCookies = () => {
return cookies.getAll()

}

289

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

const { args } = props
const method = args['method"]
const cookie = args['cookie']
const value = args['value']
const expires at = args['expires at']
let output = null
switch (method) {
case 'set':
output = setCookie(cookie, value, expires at)
break
case 'get':
output = getCookie(cookie)
break
case 'getAll':
output = getAllCookies()
break
case 'delete’:
output = deleteCookie(cookie)
break
default:
break
}
if (output && JSON.stringify(last output) != JSON.
stringify(output)) {
last_output = output
Streamlit.setComponentValue(output)
Streamlit.setComponentReady()
}
useEffect(() => Streamlit.setFrameHeight())
return <div></div>
}

export default withStreamlitConnection(CookieManager)

290

CHAPTER 10 BUILDING STREAMLIT COMPONENTS
Listing 10-22. CookieManager/__init__.py

import os
import streamlit.components.vl as components
import datetime
from extra_streamlit components import IS RELEASE
if IS RELEASE:
absolute path = os.path.dirname(os.path.abspath(_file))
build path = os.path.join(absolute path, 'frontend/build")
_component_func = components.declare_component('cookie
manager', path=build path)
else:
_component_func = components.declare_component('cookie
manager ',
url="http://localhost:3001")
class CookieManager:
def _init (self, key="init'):
self.cookie manager = component func
self.cookies = self.cookie manager(method='getAll",
key=key, default={})
def get(self, cookie: str):
return self.cookies.get(cookie)
def set(self, cookie, val,
expires at=datetime.datetime.now() + datetime.
timedelta(days=1), key='set'):
if cookie is None or cookie == '':
return
expires at = expires at.isoformat()
did add = self.cookie manager(method="set",
cookie=cookie, value=val, expires at=expires at, key=key,
default=False)
if did_add:

291

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

self.cookies[cookie] = val
def delete(self, cookie, key='delete'):
if cookie is None or cookie == "':
return
did add = self.cookie manager(method="delete’,
cookie=cookie, key=key, default=False)
if did_add:
del self.cookies[cookie]
def get all(self, key='get all'):
self.cookies = self.cookie manager(method="getAll",
key=key, default={})

return self.cookies

Listing 10-23. How to initialize and use Cookie Manager

@st.cache_resource
def get manager():

return stx.CookieManager()
cookie manager = get manager()

Cookie Manager
All Cookies:

Bt

}

Get Cookie: Set Cookie: Delete Cookie:

Figure 10-14. Cookie Manager demo from Extra-Streamlit-Components

292

CHAPTER 10 BUILDING STREAMLIT COMPONENTS

10.5. Summary

As you reach the end of this chapter, you now possess the knowledge
needed to create innovative and exciting custom components for
Streamlit. By using a simplified version of the React]S template and
referring to online resources, you can not only replicate React]S’s Material
Ul views in Streamlit but also control browser functionalities to integrate a
native web application UX into your app. This chapter also covered how to
customize various aspects of the Streamlit user interface, adding versatility
and uniqueness to your application. The techniques shared in building
this library can be scaled and adapted by any developer for a wide range of
purposes. Lastly, it is important to remember that no component reaches
its full potential without being shared with the open source community,
where it can be improved iteratively with feedback and suggestions from

fellow developers.

293

CHAPTER 11

Streamlit Use Cases

In this chapter, we will explore several real-world use cases of Streamlit,
including applications in data visualization, real-time dashboards, and
time-series analysis. We will also demonstrate how to interface Streamlit
applications with external subsystems such as Arduino microcontrollers,
infrared temperature sensors, and sonar modules. By integrating with
physical devices and peripherals, Streamlit can be extended beyond digital
dashboards to support embedded systems and IoT applications. For
example, we could develop an operations dashboard to remotely monitor
a building’s temperature or control a valve motor on a factory line. The
possibilities are virtually limitless. As the culmination of the concepts
covered throughout this book, the final section of this chapter will guide
readers through the development of an advanced machine learning
application that ties together many of the techniques discussed previously.

11.1. Dashboards and Real-Time
Applications

A small yet invaluable niche within web applications consists of
dashboards—whether or not they interface with real-time devices.
Examples include meteorological applications that report live weather
data, or control panels that allow users to operate motors with real-time
feedback. The possibilities are vast, and the utility, unmatched. Thanks

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Fernandez 2025 295
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_11

https://doi.org/10.1007/979-8-8688-1826-4_11#DOI

CHAPTER 11 STREAMLIT USE CASES

to Streamlit’s versatility—particularly in handling data visualizations and
dynamic placeholders—we are well-equipped to build such applications.
In the following sections, we will examine two representative examples
from this category.

11.1.1. Temperature Data Recorder Application

Given the need for real-time insights into physical parameters, numerous
entities—including energy firms, research institutions, and meteorological
departments—are rapidly adopting SCADA systems, often at exorbitant
costs, to enhance data accessibility. While large corporations can afford to
allocate significant budgets for such systems, smaller enterprises or private
individuals may lack the same financial resources. Fortunately, they

can develop cost-effective alternatives using Arduino microcontrollers,
hobbyist-grade peripherals, and, most importantly, Streamlit to create
intuitive dashboards and control systems.

In this section, we will demonstrate the implementation of a basic
temperature data recording system. Specifically, an ML.X90614 infrared
thermometer will be connected to an Arduino UNO microcontroller
to sample ambient temperature, as illustrated in Figure 11-1. Before
uploading the measurement code to the microcontroller, you must install
the infrared thermometer's library Adafruit MLX90614 within the Arduino
IDE, as shown in Figure 11-2. Once installed, you can upload the code
provided in Listing 11-1 to the microcontroller via a USB connection. The
corresponding COM port used for interfacing can also be determined
through the Arduino IDE.

296

CHAPTER 11 STREAMLIT USE CASES

e ARDUINO
LR]

2- PWNY 1-SCU
SDA vz
3- VDD 4.VSS
®
Top\ﬂérw

W.

223232

Figure 11-1. Arduino microcontroller and infrared thermometer
wiring schematic [19]

o i NS0

gt MMCA LA WAy b e o P Tl e

Figure 11-2. Arduino IDE with library manager

297

CHAPTER 11 STREAMLIT USE CASES

Listing 11-1. Arduino_temperature_data_recorder.ino

#include <Wire.h>
#include <Adafruit MLX90614.h> // Import thermometer library
Adafruit MLX90614 mlx = Adafruit MLX90614(); // Specify
thermometer type
void setup() {
Serial.begin(9600);
mlx.begin(); // Initialize temperature sensor
}
void loop() {
Serial.println(mlx.readAmbientTempC()); // Read and
transfer temperature data
delay(1000);

The microcontroller will transmit data to the Streamlit application
via a serial interface, using the Python library pySerial, as demonstrated
in Listing 11-2. Ensure that the correct COM port is specified when
initializing the serial client in your Python script. The Streamlit application
will function as a data logger, allowing the user to set an end date and time
up to which temperature readings should be recorded. Once initiated, the
application will continuously read and visualize the temperature data from
the microcontroller at a frequency of 1 Hz, controlled by the time.sleep
function. Upon reaching the specified recording end time, all collected
readings will be presented in a table and made available for download, as
illustrated in Figure 11-3.

Listing 11-2. temperature_data_recorder_app.py

import serial

import time

import streamlit as st

import plotly.graph objects as go

298

CHAPTER 11 STREAMLIT USE CASES

import plotly.express as px

from datetime import datetime

import pandas as pd

Plotly temperature gauge visualization function

def temperature gauge(temperature, previous temperature, gauge
placeholder):

fig

fig.

)

= go.Figure(go.Indicator(

domain = {'x"': [0, 1], 'y': [0, 1]},

value = temperature,

mode = 'gauge+number+delta’,

title = {'text': 'Temperature (C) '},

delta = {'reference': previous temperature},
gauge = {'axis': {'range': [0, 40]}}))
update layout(

width=300,

gauge placeholder.write(fig)
Plotly time-series temperature visualization
def temperature chart(df, chart placeholder):

fig

= px.line(df, x='Time', y='Temperature (C)')

chart_placeholder.write(fig)

if _name_ == "' main_ ':

st.sidebar.title('Temperature Data Recorder')
recording = False

End date and time form for temperature recording
with st.sidebar.form('form 1'):

col1, col2, = st.columns(2)

with col1:

end date = st.date_input('Recording end date')
with col2:

end time = st.time_ input('Recording end time")

299

CHAPTER 11 STREAMLIT USE CASES

300

if st.form submit button('Start recording'):
recording = True
arduino = serial.Serial(port='COM4', baudrate=9600)
previous temperature = 0
temperature record = pd.DataFrame(columns=['Time','Temperat
ure (C)'])
gauge placeholder = st.sidebar.empty()
chart_placeholder = st.empty()
Recording data while current date and time is less than
specified end
while recording and (datetime.now() < datetime.combine(end_
date, end time)):
current time = datetime.now().strftime('%H:%M:%S")
temperature = round(float(arduino.readline().decode().
strip('\r\n")),1)
temperature record.loc[len(temperature record),
['Time', 'Temperature (C)']] = [current time, temperature]
temperature gauge(temperature, previous temperature,
gauge placeholder)
temperature chart(temperature record, chart placeholder)
time.sleep(1)
previous temperature = temperature
Display and download temperature date if end date and
time exceeded
if recording and (datetime.now() > datetime.combine
(end_date, end time)):
arduino.close()
if len(temperature record) > O:
st.write(temperature record)
st.download button(
label="Download data',

CHAPTER 11 STREAMLIT USE CASES

data=temperature_record.to_csv(index=False).
encode('utf-8'),
file name='temperature record.csv',
mime="text/csv',
)
else:
st.warning('Please select a future end date and time')

Temperature Data
Recorder

Figure 11-3. Output of Listing 11-2

11.1.2. Motor Command and Control Application

Electric motors play a critical role in a wide range of industrial and non-
industrial applications—from operating control valves on a factory floor
to adjusting flight surfaces on a remote-controlled aircraft. Given their
versatility, developers frequently require dashboards that enable both
motor control and performance visualization, often through the use

of gauges.

301

CHAPTER 11 STREAMLIT USE CASES

In this example, we will control the speed and direction of a motor
using a USB joystick and an Arduino UNO microcontroller. The motor
selected for this demonstration is the SM-S3317SR, a compact continuous
servo motor, connected as illustrated in Figure 11-4. Both the joystick
and the microcontroller will interface with the computer hosting the
Streamlit server via USB. To begin, upload the sketch in Listing 11-3 to the
microcontroller using the Arduino IDE. This script is designed to receive
speed and direction commands from the Streamlit application over a serial
interface and execute them accordingly.

Listing 11-3. Arduino_motor_control.ino

#include <Servo.h>

Servo motor;

String input;

int target speed;

void setup() {
motor.attach(3);
Serial.begin(9600);

}
void loop()
{
if(Serial.available()) // Check if data available in
serial port
{
input = Serial.readStringUntil('\n'); // Read data
until newline
target speed = input.toInt();
motor.write(target speed); // Move motor at target speed
}
}

302

CHAPTER 11 STREAMLIT USE CASES

Figure 11-4. Arduino microcontroller and servo motor wiring
schematic [20]

To begin, you can use either the Arduino IDE or your computer’s
device manager to identify the serial COM port associated with the
microcontroller. Make sure to use the same port when creating the serial
client in your Streamlit application, utilizing the Python library pySerial
as shown in Listing 11-4. In this script, we will also integrate the Pygame
library to interface with the joystick controller. The forward axis values
of the joystick will control the speed and direction of the servo motor.
Additionally, one of the joystick buttons will function as a kill switch to
immediately stop the motor. To continuously update the motor’s target
speed, a Plotly gauge visualization will be displayed within a Streamlit
placeholder, as demonstrated in Figure 11-5. This approach can be easily
scaled to connect and simultaneously visualize and control other motors,
actuators, sensors, and peripherals, making it ideal for more complex
systems.

Please note that using Pygame to interface with a joystick is not
recommended for applications without a display, because Pygame requires
initializing a video system, which can lead to errors or unnecessary
overhead. For headless setups or applications running on devices without a
screen, it is better to use a modern, lightweight, and cross-platform library
like hidap1 for direct controller input.

303

CHAPTER 11 STREAMLIT USE CASES

Listing 11-4. motor_control_app.py

import serial
import pygame as pg
import streamlit as st
import plotly.graph objects as go
import time
Plotly speed gauge visualization function
def speed gauge(target speed, placeholder):
fig = go.Figure(go.Indicator(
domain = {'x"': [0, 1], 'y': [0, 1]},
value = int(target speed)-90,
mode = 'gauge+number+delta’,
title = {"text': 'Speed'},
delta = {'reference': 0},
gauge = {'axis': {'range': [-30, 30]}}))
placeholder.write(fig)
if _name__ == "' main_ ':
st.sidebar.title('Motor Command & Control')
info_bar = st.empty()
speedometer = st.empty()
Create Arduino serial client
arduino = serial.Serial(port="COM5', baudrate=9600)
Create PyGame client
pg.init()
Create a list of available joysticks to initialize
joysticks = [pg.joystick.Joystick(x) for x in range(pg.
joystick.get count())]
for joystick in joysticks:
joystick.init()
if st.sidebar.button('Start motor'):
info_bar.info('Motor started')

304

CHAPTER 11 STREAMLIT USE CASES

Connect to Arduino
try:
arduino.open()
except Exception as e:
print(e)
if st.sidebar.button('Stop motor'):
info_bar.warning('Motor stopped')
arduino.write(bytes('90"' +'\n', 'utf-8"))
arduino.close()
pg.quit()
while True:
Report all joystick events
for event in pg.event.get():
print(event)
for joystick in joysticks:
if joystick.get id() == 0: # Access the first
connected joystick
axes = joystick.get numaxes()
for x in range(axes): # Check all inputs of
the joystick
target speed = str(int(((joystick.get
axis(1)*-1)*30 + 90)))
press = joystick.get button(0)
time.sleep(0.01)
arduino.flushInput()
arduino.flushOutput()
arduino.flush()
arduino.write(bytes(target speed +'\n', 'utf-8')) #
Send speed to Arduino
speed gauge(target speed, speedometer)
Disconnect Arduino if joystick button pressed

305

CHAPTER 11 STREAMLIT USE CASES

if press ==
try:
arduino.write(bytes('90' +'\n', 'utf-8"))
arduino.close()
except Exception as e:
print(e)
break
Disconnect Arduino if 'Stop motor' button pressed
info_bar.warning('Motor stopped')
try:
arduino.write(bytes('90"' +'\n', 'utf-8"))
arduino.close()
except Exception as e:
print(e)
pg-quit()

Motor Command & Control

Figure 11-5. Output of Listing 11-4

306

CHAPTER 11 STREAMLIT USE CASES

11.2. Time-Series Applications

Time-series data is one of the most commonly used forms of data, as it is
indexed by time, date, or both. Examples include temperature readings
from a thermostat or signals from a SCADA system. However, time-

series datasets come with their own set of challenges, such as filtering,
aggregating, and visualizing the data effectively. Fortunately, Streamlit
provides the tools to easily build applications that can address these needs,
enabling developers to create powerful solutions for handling time-series
data, as demonstrated in the following sections.

11.2.1. Date-Time Filter Application

Filtering data based on a time range is a common function in nearly every
data science application. Often, you may only need a subset of the data,
which can be easily achieved by selecting a leading or trailing date-time to
truncate the dataset. However, timestamps often come in various formats,
and sometimes the date and time are split into separate columns, making
it challenging to create a one-size-fits-all solution.

In this example, we will build a date-time filter for one of the most
widely used date-time formats: DD/MM/YYYY HH:MM, with the date in
the first column and arbitrary measurements in the second column.
Using Streamlit’s st.slider, we will allow users to truncate the leading
and trailing edges of the time-series data. The filtered data will then
be visualized using a Plotly line chart, as shown in Listing 11-5 and
Figure 11-6. This application can be adapted to other date-time formats by
simply adjusting the timestamp format in the code.

307

CHAPTER 11 STREAMLIT USE CASES
Listing 11-5. datetime_filter.py

import pandas as pd
import streamlit as st
from datetime import datetime
import plotly.express as px
Streamlit slider function used to truncate leading and
trailing edges of dataset
def datetime filter(datetime col, df, format):
lead, trail = st.sidebar.slider('Date-time filter', o,
len(df)-1, [0,len(df)-1], 1)
df[datetime col] = pd.to datetime(df[datetime col],
format=format)
sd = df.loc[lead][datetime col].strftime('%d %b %Y,
%L:%M%p")
ed = df.loc[trail][datetime col].strftime('%d %b %Y,
BL:H5M%p)
st.sidebar.info(f'Start: **{sd}**")
st.sidebar.info(f'End: **{ed}**")
filtered df = df.iloc[lead:trail+1][:]
return filtered df
Plotly time-series visualization function
def timeseries chart(df, datetime col, value col):
df[datetime col] = df[datetime col].dt.strftime(' %H:%M on
%B %-d, %Y')
df = df.sort values(by=datetime col)
fig = px.line(df, x=datetime col, y=value col,
hover data={datetime col: 'I%d/%m/%Y %H:%M'})
st.write(fig)
if _name__ == "' main_ ':
st.sidebar.title('Date-time Filter"')

308

CHAPTER 11 STREAMLIT USE CASES

uploaded file = st.sidebar.file uploader('Upload a time-
series dataset')
if uploaded file is not None:
df = pd.read csv(uploaded file)
df filtered = datetime filter('datetime’, df,
"%d/%m/%Y F%H:%M")
st.header('Filtered Chart")
timeseries chart(df filtered, 'datetime’, 'value')
st.download button(
label="Download filtered data’,
data=df filtered.to csv(index=False).encode('utf-8"),
file name='filtered data.csv',
mime="text/csv',

Date-time Filter

Filtered Chart

i "
‘||" M I|| ['I| ' |,||I|

| '||| .
| ||||| \ |||i||l| ||| i: |I Rk I|I.' 0 I|Il|||
u\| "' ARl

—s J||

| |.. I ||V |.|

Figure 11-6. Output of Listing 11-5

309

CHAPTER 11 STREAMLIT USE CASES

11.2.2. Time-Series Heatmap Application

Another commonly used form of time-series data visualization is the
monthly-hourly heatmap. These visualizations allow data points to be
grouped into averages for each hour of each month, providing valuable
insights for time-series analytics. For example, you might want to track the
average temperature over the course of a year or measure website traffic
within a one-year period.

In this application, we begin by parsing our date-time column
(formatted as DD/MM/YYYY HH:MM) into two separate columns: one for
the month (e.g., January) and another for the hour (e.g., 12AM). Using
Pandas’s groupby command, we aggregate the data into monthly and
hourly averages across the entire dataset. Finally, we visualize the
aggregated data using Plotly’s heatmap in our Streamlit application, as
shown in Listing 11-6 and Figure 11-7.

Listing 11-6. timeseries_heatmap.py

import pandas as pd

import streamlit as st

from datetime import datetime

import plotly.express as px

Month-hours dictionary generator

def month_hours dict():
month_hours = {}
month _names = ['January', 'February', 'March', 'April’, 'May',
"June', 'July’, 'August’, 'September', 'October', 'November', 'D
ecember' |

for month _name in month_names:
month = {month _name: {'12AM': None, '01AM': None,
"02AM': None,

310

CHAPTER 11 STREAMLIT USE CASES

"03AM': None, '04AM': None, 'O5AM': None,
06AM': None, 'O7AM': None, 'O8AM': None,
'09AM': None, '10AM': None, '11AM': None,
"12PM': None, '01PM': None, '02PM': None,
'03PM': None, '04PM': None, 'O5PM': None,
"06PM': None, 'O7PM': None, 'O8PM': None,
"09PM': None, '10PM': None, '11PM': None}}
month_hours.update(month)
return month_hours
Aggregating data into monthly-hourly averages
def aggregate(df, datetime col, format):
df[datetime col] = pd.to datetime(df[datetime col],
format="%d/%m/%Y %H:%M")
for i in range(0,len(df)):
df.loc[i, 'Month'] = df.loc[i][datetime col].
strftime('%B")
df.loc[i, 'Hour'] = df.loc[i][datetime col].
strftime('%I%p")
return df.groupby(['Month', "Hour'],sort=False,as
index=False).mean().round(4)
Plotly heatmap visualization
def heatmap(df, month hours, value col):
for i in range(len(df)):
month_hours[df.iloc[i][0]][df.iloc[i][1]] = df.loc[i]
[value col]
data_rows = list(month_hours.values())
data = []
for i in range(0,len(data_rows)):
data.append(list(data_rows[i].values()))
fig = px.imshow(data,

311

CHAPTER 11 STREAMLIT USE CASES

if _name_ == "' main_':

312

labels=dict(x="Hour"', y="Month',

color="Value'),
x=["12AM", '01AM', "02AM", '03AM'
,"04AM", "05AM", '06AM' , ' O7AM',
'08AM', '09AM', '10AM', '11AM',
"12PM','01PM', '02PM', "03PM', "0
4PM','O5PM', '06PM', '07PM’,
"08PM', '09PM', '10PM', "11PM'],
y=['January', 'February', 'March'
, April','May', 'June', 'July’,
"August’, 'September', 'October"’,
"November ', 'December ']

)
st.write(fig)

st.sidebar.title('Time-series Heatmap')
uploaded file = st.sidebar.file uploader('Upload a time-
series dataset')
if uploaded file is not None:
month_hours = month_hours dict()
df = pd.read csv(uploaded file)
df aggregate = aggregate(df, 'datetime’,
"%d/%m/%Y F%H:%M")
heatmap(df aggregate, month hours, 'value')

CHAPTER 11 STREAMLIT USE CASES

Time-series Heatmap

Figure 11-7. Output of Listing 11-6

11.2.3. Time Synchronization Application

One of the classical challenges when working with time-series data is the lack
of synchronization between datasets. Even if two datasets represent the same
information at the same moment, they might have different timestamps,
leading to a variety of unintended problems. These discrepancies can arise
from several factors, such as different time zones—where one zone observes
daylight savings while the other does not—or errors in the SCADA systems
during data recording. Regardless of the cause, it is essential to synchronize
time-series datasets to ensure accurate analysis and interpretation of the data.

To address this issue, a technique known as dynamic time warping (DTW)
can be employed. DTW synchronizes misaligned datasets by applying dynamic
time offsets wherever necessary to maximize the correlation between the two.
The advantage of this method is its ability to adjust time offsets as needed to
achieve the highest possible correlation at each timestamp. Moreover, DTW can
be applied to datasets of varying lengths. The only caveat is that missing values
must be filled in before DTW can be executed without errors.

313

CHAPTER 11 STREAMLIT USE CASES

In this example, we will create a Streamlit application to synchronize a
dataset of power vs. voltage readings, where the voltage data is misaligned
by two hours. As shown in Listing 11-7, we will define the power column
as the reference dataset, which will be used to synchronize the voltage
column, the target dataset. The synchronization function will take the
unsynchronized data (as shown in Figure 11-8) and apply time offsets to
the target's timestamps, resulting in the synchronized data displayed in
Figure 11-9.

Listing 11-7. timeseries_synchronization.py

import numpy as np

import pandas as pd

import streamlit as st

from fastdtw import *

import plotly.express as px

from sklearn.metrics import r2 score

from scipy.spatial.distance import *

Dynamic Time Warping synchronization function

def synchronize(df, datetime col, reference, target):
x = np.array(df[reference].fillna(0))
y = np.array(df[target].fillna(0))
distance, path = fastdtw(x, y)

result = [
[df[datetime col].iloc[path[i][0]], df[reference].
iloc[path[i][0]], df[target].iloc[path[i][1]]]
for i in range(len(path))

]

df synchronized = pd.DataFrame(result, columns=[datetime
col, reference, target])

df synchronized = df synchronized.drop _
duplicates(subset=[datetime col])

314

CHAPTER 11 STREAMLIT USE CASES

return df_synchronized
Plotly time-series visualization function
def timeseries chart(df, datetime col):
df columns = list(df)
df[datetime col] = pd.to datetime(df[datetime
col],format="%d-%m-%y %H:%M")
df = df.sort values(by=datetime col)
fig = px.line(df, x=datetime_col, y=df columns,
hover data={datetime col: 'I%d-%m-%Y %H:%M'})
st.write(fig)
if _name_ == "' main_ ':
st.sidebar.title('Time-series Synchronization')
uploaded file = st.sidebar.file uploader('Upload a time-
series dataset')
if uploaded file is not None:
df = pd.read csv(uploaded file).
dropna(subset=['datetime'])
df synchronized = synchronize(df, 'datetime', 'power',
"voltage')
timeseries chart(df, 'datetime")
st.subheader(f'Correlation: {round(r2_
score(df["power"], df["voltage"]), 3)}")
timeseries chart(df synchronized, 'datetime’)
st.subheader(f'Correlation: {round(r2_
score(df _synchronized["power"], df
synchronized["voltage"]), 3)}")
st.download button(
label="Download synchronized data’',
data=df synchronized.to csv(index=False).encode('utf-8"),
file name='synchronized data.csv',
mime="text/csv')

315

CHAPTER 11 STREAMLIT USE CASES

Time-series -
Synchronization

bl
ST

Correlation: -0.831

\ Ak Al

Figure 11-8. Output of Listing 11-7 (unsynchronized dataset)

Time-series
Synchronization

= Ay

Correlation: 0,713

Figure 11-9. Output of Listing 11-7 (synchronized dataset)

316

CHAPTER 11 STREAMLIT USE CASES

11.3. Data Management and Machine
Learning Applications

Undoubtedly, one of the most popular use cases for Python-based web
applications is data management and machine learning. This is where
Streamlit truly excels. With its extensive library of widgets for data
wrangling and visualization, Streamlit empowers developers to effortlessly
create powerful data analytics applications.

11.3.1. Data Warehouse Application

In this section, we will outline the foundational components for building
a data warehousing application. While warehousing typically refers to the
structured storage of data, in this case, we will leverage Streamlit to provide
arich graphical interface for managing databases and tables. Users will be
able to create, read, update, and delete data, and visualize stored data on
demand, all within a single application. With this tool, users can connect
to either a local or remote SQL database and manage their data without
needing to write SQL queries or any code.

For this example, we will use a local PostgreSQL database; however,
you can choose any local or remote SQL database by simply modifying
the database credentials and client configurations as shown in
Listings 11-8 and 11-10. To enhance security, it's recommended to store
your credentials in a local configuration file and ensure that this file is
added to your .gitignore file when pushing to remote repositories. Next,
use Listing 11-9 to define the functions for creating, reading, updating, and
deleting data within your databases and tables. This utility file will also
enable the interactive CRUD table widget, as discussed in Section 4.1, and
allow for data visualization through a line chart.

317

CHAPTER 11 STREAMLIT USE CASES
Listing 11-8. config.py

username = "<username>"

password = "<password>"

port = "<port>"

Listing 11-9. warehouse_utils.py

from sqlalchemy import create engine, text
import psycopg2
from psycopg2.extensions import ISOLATION LEVEL AUTOCOMMIT
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
from st aggrid.shared import GridUpdateMode
from st _aggrid.grid options builder import GridOptionsBuilder
import plotly.express as px
Function to create a new database
def create database(database name, connection):
connection.set_isolation level(ISOLATION LEVEL AUTOCOMMIT)
cursor = connection.cursor()
try:
cursor.execute(f"""CREATE DATABASE {'warehouse db ' +
database name} WITH OWNER = postgres ENCODING =
"UTF8' CONNECTION LIMIT = -1;""")
cursor.close()
return True
except:
return False
Function to return a list of databases
def read databases(engine):
with engine.connect() as conn:

318

CHAPTER 11 STREAMLIT USE CASES

result = conn.execute(text('SELECT datname FROM pg_
database'))
result = [x[0].replace('warehouse db ', '') for x
in result
if 'warehouse db ' in x[0]]
return result
Function to rename a selected database
def update database(database name old, database name new,
connection):
connection.set_isolation level(ISOLATION LEVEL AUTOCOMMIT)
cursor = connection.cursor()
try:
cursor.execute(f"""SELECT pg terminate backend (pg_
stat_activity.pid)
FROM pg_stat activity WHERE pg stat activity.datname =
"{"warehouse db " + database name old}';""")
cursor.execute(f"""ALTER DATABASE {'warehouse db '
+ database name old} RENAME TO {'warehouse db ' +
database _name_new};""")
cursor.close()
return True
except Exception as e:
print(e)
Function to delete a selected database
def delete database(database name, connection):
connection.set_isolation level(ISOLATION LEVEL AUTOCOMMIT)
cursor = connection.cursor()
try:
cursor.execute(f"""SELECT pg terminate backend (pg_
stat activity.pid)

319

CHAPTER 11 STREAMLIT USE CASES

FROM pg_stat activity WHERE pg stat activity.datname =
"{"warehouse db " + database name}';""")
cursor.execute(f"""DROP DATABASE {'warehouse db ' +
database name};""")
cursor.close()
return True
except Exception as e:
print(e)
Function to create a table in the selected database
def create table(table name, table, engine):
table.to_sql(table name, engine, index=False, if
exists="'replace', chunksize=1000)
Function to return a list of tables in the selected database
def list tables(engine):
with engine.connect() as conn:
tables = conn.execute(text("""SELECT table name FROM
information_schema.tables
WHERE table schema = 'public' ORDER BY table
name;""")).fetchall()
return [x[0] for x in tables]
Function to read the selected table within the selected
database
def read table(table name, engine):
try:
return pd.read sql table(table name,engine)
except Exception as e:
print(e)
Function to delete the selected table within the selected
database
def delete table(table name, engine):
with engine.begin() as conn:

320

CHAPTER 11 STREAMLIT USE CASES

conn.execute(text(f'DROP TABLE IF EXISTS "{table name}"'))

Function to render an interactive 'create, read, update and
delete' table
def crud(table name, engine):

df = read table(table name, engine)

df = df.fillna('None")

index = len(df)

Initiate the streamlit-aggrid widget

gb = GridOptionsBuilder.from dataframe(df)

gb.configure side bar()

gb.configure default column(groupable=True, value=True,

enableRowGroup=True,

aggFunc="sum', editable=True)

gb.configure selection(selection mode="multiple', use_

checkbox=True)

gridOptions = gb.build()

Insert the dataframe into the widget

df new = AgGrid(df,gridOptions=gridOptions,enable_

enterprise modules=True,

update_mode=GridUpdateMode.MODEL CHANGED)

Add a new row to the widget

if st.button('----------- Add a new row----------- "):
df new['data'].loc[index,:] = 'None'
create table(table name, df new['data'], engine)
st.rerun()

Save the dataframe to disk if the widget has been

modified

if df.equals(df new['data']) is False:
create table(table name, df new['data'], engine)
st.rerun()

Remove selected rows from the widget

if st.button('----------- Remove selected rows----------- "):

CHAPTER 11 STREAMLIT USE CASES

if len(df new['selected rows']) > 0:
exclude = pd.DataFrame(df new['selected rows'])
create table(table name, pd.merge(df new['data'],
exclude, how='outer',

indicator=True).query(' merge == "left only"').
drop(' _merge', 1), engine)
st.rerun()

else:

st.warning('Please select at least one row')
Check for duplicate rows
if df new['data'].duplicated().sum() > O:
st.warning(f'**Number of duplicate rows:** { df_
new['data’].duplicated().sum()}")
if st.button('--------- Delete duplicates--------- "):
df new['data'] = df new['data'].drop duplicates(
create table(table name, df new['data'], engine)
st.rerun()
Function to render a line chart for the selected table
def chart(df, columns):
if len(columns) > 0:
fig = px.line(df.sort index(), df.index, columns)
st.write(fig)

Finally, you can use Listing 11-10 to render the frontend interface for
your data warehousing application. The output of this script, as shown in
Figures 11-10, 11-11, and 11-12, is divided into three sections:

1. Database Manager: This section provides the user
with the ability to create, read, rename, and delete
databases.

2. Table Manager: In this section, the user can upload
atable in CSV format, update it using the interactive
CRUD widget, and delete the table.

322

CHAPTER 11 STREAMLIT USE CASES

3. Data Visualizer: This section allows the user to
visualize any numeric table by selecting one or
more columns and displaying them within a range-
indexed line chart.

Listing 11-10. warehouse_app.py

from warehouse utils import *
import config # (Credentials file
PostgreSQL credentials
username = config.username
password = config.password
port = config.port
if _name_ == "' main_':
Creating PostgreSQL client
connection = psycopg2.connect(f"user={username}
password="{password}'")
engine = create_engine(
f'postgresql://{username}:{password}@
localhost:{port}/")
st.title('Data Warehouse')
stowrite(' ")
st.subheader ('Database Manager')
col1, col2 = st.columns(2)
with col1:
st.write('**Create database**')
database name = st.text input('Please enter
database name")
if st.button('Create database'):
status = create_database(database name, connection)
if status is True:
st.success(f'Database **{database name }**
created successfully')

323

CHAPTER 11 STREAMLIT USE CASES

elif status is False:
st.warning('Database with this name already exists')
st.write('**Rename database**")
database name old = st.selectbox('Please select a
database to rename',
read databases(engine))
if database name old is not None:
database name new = st.text input('Please enter new
database name')
if st.button('Rename database'):
status = update database(database name old,
database name_new, connection)
if status is True:
st.success(f'Database renamed from
{database _name old} to **{database
name_new}**")
with col2:
st.write('**List databases**")
database_selection = st.selectbox('Databases
list',read databases(engine))
st.write('**Delete database**")
database _selection = st.selectbox('Please select a
database to delete’,
read databases(engine))
if database selection is not None:
if st.button('Delete database'):
status = delete database(database selection,
connection)
if status is True:
st.success(f'Database **{database
selection}** deleted successfully')

324

CHAPTER 11 STREAMLIT USE CASES

st.write(' ")
st.subheader('Table Manager')
st.write('**Select database**")
database selection = st.selectbox('Please select a
database’,
read databases(engine))
if database_selection is not None:
engine database = create engine(f'postgresql://
{username}:{password}@localhost:{port}/{ 'warehouse db '
+ database selection}')
coll 2, col2 2 = st.columns(2)
with col1l 2:
st.write('**Create table**")
table = st.file uploader('Please upload data')
if table is not None:
table = pd.read csv(table)
table _name = st.text input('Please enter
table name')
if st.button('Save table'):
if len(table_name) > o:
create_table(table name, table, engine_
database)
st.success(f'**{table name}** saved to
database')
else:
st.warning('Please enter table name')
with col2 2:
st.write('**Delete table**")
table selection = st.selectbox('Please select table
to delete’,
list tables(engine database))

325

CHAPTER 11 STREAMLIT USE CASES

326

if table_selection is not None:
if st.button('Delete table'):
delete table(table selection, engine_
database)
st.success(f'**{table _selection}** deleted
successfully")
st.write('**Read and update table**")
table selection = st.selectbox('Please select table to
reade and update’,
list tables(engine database))
if table_selection is not None:
crud(table selection, engine database)
st.write(' ")
st.subheader('Data Visualizer")
st.write('**Select database**")
database selection = st.selectbox('Please select a database
to visualize',
read databases(engine))
if database_selection is not None:
engine database = create engine(f'postgresql://
{username}:{password}@localhost:{port}/{ 'warehouse db '
+ database selection}')
coll 3, col2 3 = st.columns(2)
with col1l 3:
table selection = st.selectbox('Please select table
to visualize',
list tables(engine database))
table = read table(table selection, engine database)
if table_selection is not None:
with col2 3:
columns = st.multiselect('Please select
columns', table.columns)

CHAPTER 11 STREAMLIT USE CASES

table[columns] = table[columns].apply(pd.to_
numeric, errors='coerce')
chart(table, columns)

Data Warehouse

Database Manager

Figure 11-10. Output of Listing 11-10

Table Manager

Solect database

Figure 11-11. Output of Listing 11-10 continued (1)

327

CHAPTER 11 STREAMLIT USE CASES

Data Visualizer

Figure 11-12. Output of Listing 11-10 continued (2)

11.3.2. Advanced Application Development:
Machine Learning As a Service

The final use case for this chapter is a Machine Learning as a Service
(MLaaS) application. This example will integrate many of the key concepts
covered in this book, showcasing how to combine databases, caching,
session state, user authentication, traffic insights, data visualization,
subpages, modularity, and other features to build an advanced,
production-ready web application in Streamlit.

Before diving into the details, it is important to explain the
functionality of this application. In essence, it will allow users to train
a logistic regression model on an uploaded dataset and then use the
trained model to classify a test dataset. While the core utility might seem
simple, the implementation will leverage the full capabilities of Streamlit,
PostgreSQL, Pandas, Plotly, and other technologies. This use case is also

328

CHAPTER 11 STREAMLIT USE CASES

highly scalable, having been extended to support additional classifiers
such as decision trees, support vector machines, Naive Bayes, and
K-nearest neighbors.

User Authentication Without a Backend Server

In Chapter 8, we discussed implementing user authentication with a
backend server. However, it is also possible to implement authentication
without a server using the Streamlit component Streamlit-Authenticator.
While Streamlit possesses its own native authentication command st.
login which provides OIDC authentication, the Streamlit-Authenticator
component provides a lightweight local authentication service, with a
whole host of additional features such as

o User registration

o Retrieving a forgotten username
» Resetting a forgotten password

e Authenticating with OAauth?2

o Two-factor authorization

Therefore, we will use this component to demo authentication in this
chapter.

With Streamlit-Authenticator, the first step is to create a config.yaml
file that will store your users’ credentials as well as other configuration
parameters for authentication as shown in Listing 11-11. Please note
that plain text passwords will be hashed automatically unless specified
otherwise. Next, you will provide the credentials to the stauth.
Authenticate and create a login widget using the login command as
shown in Listing 11-12. Each time a user enters their plain-text password
(as shown in Figure 11-13), it is hashed and compared to the previously
stored hashed password to authenticate the user.

329

https://doi.org/10.1007/979-8-8688-1826-4_8

CHAPTER 11 STREAMLIT USE CASES

Additionally, you can enable passwordless reauthentication by
using the cookie expiry days argumentin the stauth.Authenticate
command. This will store a secure JWT (JSON Web Token) on the user's
browser, allowing them to remain authenticated for the specified number
of days before the token expires. You can check the user's authentication
status at any point in your application by accessing st.session_
state["authentication status']. For further information, please refer
to https://github.com/mkhorasani/Streamlit-Authenticator.

Listing 11-11. config.yaml

cookie:
expiry days: 30
key: # To be filled with any string
name: # To be filled with any string
credentials:
usernames:
jsmith:
email: jsmith@gmail.com
failed login attempts: 0 # Will be managed automatically
first_name: John
last name: Smith
logged in: False # Will be managed automatically
password: abc # Will be hashed automatically
roles: # Optional
- admin
- editor
- viewer
rbriggs:
email: rbriggs@gmail.com
failed login attempts: 0 # Will be managed automatically
first name: Rebecca
last name: Briggs

330

https://github.com/mkhorasani/Streamlit-Authenticator

CHAPTER 11 STREAMLIT USE CASES

logged in: False # Will be managed automatically
password: def # Will be hashed automatically
roles: # Optional

- viewer

Listing 11-12. Streamlit-Authenticator.py

import streamlit as st

import streamlit authenticator as stauth
import yaml

from yaml.loader import Safeloader

with open('../config.yaml') as file:
config = yaml.load(file, Loader=Safeloader)

authenticator = stauth.Authenticate(
config['credentials'],

config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry days']
)
try:

authenticator.login()

except Exception as e:
st.error(e)

if st.session state.get('authentication status'):
authenticator.logout()
st.write(f'Welcome *{st.session state.get("name")}*")
st.title('Some content')

elif st.session state.get('authentication status') is False:
st.error('Username/password is incorrect')

elif st.session state.get('authentication status') is None:
st.warning('Please enter your username and password')

331

CHAPTER 11 STREAMLIT USE CASES

Login

Figure 11-13. Output of Listing 11-12

Utilities Script

Modularizing application development is a good practice, as it helps
organize and streamline the codebase. Commonly used classes, functions,
database connections, and other objects should be relocated to a shared
file, often named Utils.py. In our case, we will place functions for querying
the user-insights table, generating a session ID, creating a file upload
widget, and establishing a PostgreSQL connection within this file, as
shown in Listing 11-13. Moreover, a valuable optimization technique is to
use the st.cache_resource command to cache the database connection
object. This will save a significant amount of time whenever a call is made
to the database, improving the overall performance of the application.

Listing 11-13. Utils.py

import pandas as pd

from sqlalchemy import create_engine, text
import streamlit as st

import uuid

Inserting new row in traffic insights table

332

CHAPTER 11 STREAMLIT USE CASES

def insert row(session id, engine):
with engine.connect() as conn:
if conn.execute(text(f"SELECT session id FROM session state
WHERE session id = '{session id}'")).fetchone() is None:
conn.execute(text(f"INSERT INTO session state
(session_id) VALUES ('{session_id}')"))
Updating row in insights table
def update row(column, new value, session id, engine):
with engine.connect() as conn:
if conn.execute(text(f"SELECT {column} FROM session_
state WHERE session _id = '{session id}'")).first()[0]
is None:
conn.execute(text(f"UPDATE session state SET {column}
= '{new_value}' WHERE session id = '{session id}'"))
Session state function
def get session():
if 'session_id' not in st.session state:
session id = str(uuid.uuids4())
session_id = session_id.replace('-', ' ")

session_id
st.session state.session id = session id

' id ' + session_id

return st.session_state.session id
File uploader function
def file upload(name):
uploaded file = st.sidebar.file uploader(name, key=name,
accept_multiple files=False)
status = False
if uploaded file is not None:
try:
uploaded df = pd.read csv(uploaded file)
status = True
return status, uploaded df

333

CHAPTER 11 STREAMLIT USE CASES

except:
try:
uploaded df = pd.read excel(uploaded file)
status = True
return status, uploaded df
except:
st.error('Please ensure file is .csv or .xlsx
format and/or
reupload file")
return status, None
else:
return status, None
@st.cache_resource
def db_engine(username, password, port):
return create_engine(f'postgresql://{username}:{password}@
localhost:{port}/")

Config Script

As mentioned in earlier sections, another best practice is to store
credentials in dictionaries within a config.py file as shown in Listing 11-14,
which is then imported and used in your main code. To ensure security,
remember to add the config.py file to your .gitignore file, preventing it
from being pushed to any remote repositories.

Listing 11-14. config.py

Traffic insights database credentials dictionary
database credentials = {

"username": "<username>",

"password": "<password>",

"port": "<port>"

}

334

CHAPTER 11 STREAMLIT USE CASES

Main Script

Now that we have covered the logistics, we can start developing the main
script of our application. This script will act as the central hub, connecting
the various pages and handling some housekeeping tasks. As shown in
Listing 11-15, we start by importing the scripts for other pages, following
the approach discussed in Section 3.3. Next, we use the Streamlit-
Authenticator component to authenticate users based on the credentials
stored in a config.yaml file. After authentication, we enable navigation
between pages using the st.selectbox command, which selects the
function for the chosen page from a dictionary of key-value pairs, where
the key is the page's name and the value is the corresponding function.
Finally, we invoke the file upload widget from our Utils.py file and store the
uploaded Pandas dataframes in the session state, making them accessible
on demand.

Listing 11-15. main.py

import streamlit as st
from Utils import *
import streamlit authenticator as stauth
import yaml
from yaml.loader import Safeloader
import config # config.py not to be mixed with config.yaml
with open('../config.yaml') as file:
config = yaml.load(file, Loader=Safeloader)

authenticator = stauth.Authenticate(

config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
[

config['cookie']["expiry days']

335

CHAPTER 11 STREAMLIT USE CASES

Importing pages

from 1r import lr main
def main(engine):

if _name__ == "' main_ ':

336

Creating pages dictionary
pages ml classifier = {

"Logistic Regression Classifier': 1lr main

}
Creating pages menu
st.sidebar.subheader('Menu")
ml module selection = st.sidebar.selectbox('Select
Classifier',
['Logistic Regression Classifier'])
Creating dataset uploader widgets
if 'df train' not in st.session_state:

st.session state['df train'] = None
if 'df real' not in st.session state:

st.session state['df real'] = None
st.sidebar.subheader('Training Dataset")
_, st.session state['df train'] = file upload('Please
upload a training dataset')
st.sidebar.subheader('Test Dataset')
_, st.session_state['df real'] = file upload('Please upload
a test dataset')
Running selected page
pages ml classifier[ml module selection](engine)
Creating PostgreSQL client for insights database
username = config.database credentials['username’]
password = config.database credentials['password"]
port = config.database credentials['port’]
engine = db_engine(username, password, port)

CHAPTER 11 STREAMLIT USE CASES

Creating user authentication object
authenticator = stauth.Authenticate(config.user
credentials['names'],
config.user credentials['usernames'], config.user
credentials['passwords'],
"some_cookie name','some signature key', cookie expiry
days=30)
Displaying login bar
try:
authenticator.login()
except Exception as e:
st.error(e)
if st.session state['authentication status']:
authenticator.logout('Logout', 'main")
st.write(f'Welcome *{st.session state["name"]}*")

main(engine)
elif st.session state['authentication status'] == False:
st.sidebar.error('Username/password is incorrect')
elif st.session state['authentication status'] == None:

st.sidebar.warning('Please enter your username and
password')

Logistic Regression Classifier

The final and undoubtedly most impactful step is to create the script

for our logistic regression classifier page. As mentioned earlier, this

application will provide machine learning-as-a-service, enabling users

to train a logistic regression model on an uploaded training dataset and

then use the trained model to classify a test dataset. The beauty of such

an application lies in its plug-and-play nature, where users do not need

to install any libraries or manage a server. To enable this functionality,

we have a set of functions, as shown in Listing 11-16, that will provide the

following:

337

CHAPTER 11 STREAMLIT USE CASES

1. Visualize a Confusion Matrix: Display the confusion
matrix to evaluate the performance of the model,
showing the true positive, false positive, true
negative, and false negative results.

2. Visualize an ROC Curve: Generate and visualize
the Receiver Operating Characteristic (ROC) curve
to evaluate the model's classification performance
across different threshold values.

3. Create an Expandable Entry Form for Model
Hyperparameters: Allow users to customize the
logistic regression model's hyperparameters via an
expandable form, making the model more flexible
and adaptable.

4. Train the Logistic Regression Model: Train the
model using the uploaded training dataset and
cache the function using st.cache_resource to
optimize performance on subsequent runs.

5. Classify Test Data Using the Trained Model: Use
the trained logistic regression model to classify the
provided test data.

6. Visualize Accuracy Metrics of Classified Data:
Display various accuracy metrics (e.g., accuracy
score, precision, recall, F1 score) to assess the
model's performance on the test data.

In addition to the core machine learning functionality, we will
integrate a traffic insights feature to track and record user interactions at
each step of the application. Specifically, as users progress through various
stages of the application, the following actions will be logged:

338

CHAPTER 11 STREAMLIT USE CASES

1. Tracking User Progress: At each step of the
application, traffic insight functions imported from
the Utils.py file will be invoked to record the exact
date and time when the user reaches a specific step.
This will help provide insights into user behavior
and engagement with the application.

2. Data Size Recording: The size of the uploaded
datasets will be logged. This information can be
helpful for understanding the scale of data the user
is working with and optimizing future data handling
strategies.

3. Saving Insights into PostgreSQL Database: All the
recorded insights (such as timestamps, dataset
sizes, and user actions) will be saved into a
PostgreSQL database. This information can later
be used for analytics or improving the application’s
performance.

4. Download Hyperparameters and Predictions: After
completing the model training and prediction steps,
the user will have the option to download their
model hyperparameters and predicted data. This
will enable users to retain and further utilize their
machine learning models outside the platform.

The various steps of this process, from uploading the dataset to
viewing the results and downloading the predictions, are visualized in
Figure 11-14, providing an overview of the workflow.

339

CHAPTER 11 STREAMLIT USE CASES

Listing 11-16. lr.py

import streamlit as st

import pandas as pd

from sklearn.model selection import train test split

from sklearn.linear model import LogisticRegression

from sklearn import metrics

import plotly.express as px

import plotly.graph objects as go

import plotly.figure factory as ff

from datetime import datetime

from Utils import *

Plotly confusion matrix visualization

def confusion matrix plot(y test, y pred):
cnf _matrix = metrics.confusion matrix(y test, y pred)
z = cnf _matrix.tolist()[::-1]

x = ['Negative', 'Positive']
y = ['Positive', 'Negative']
z text = z

fig = ff.create_annotated heatmap(z, x, y, annotation_
text=z_text, text=z,
hoverinfo="text', colorscale="Blackbody")
st.write(fig)
Plotly receiver operating characteristic visualization
function
def roc plot(X test, logreg, y test):
y _pred proba = logreg.predict proba(X test)[::,1]
fpr, tpr, = metrics.roc_curve(y test, y pred proba)
roc_data = pd.DataFrame([])
roc_data['True positive'] = tpr
roc_data['False positive'] = fpr
fig = px.line(roc_data, x='False positive', y="True positive")

340

CHAPTER 11 STREAMLIT USE CASES

st.write(fig)
auc = metrics.roc_auc_score(y test, y pred proba)
st.info(f'Area Under Curve: **{ round(auc,3)}**")
Hyperparameters expander function
def 1r_hyperparameters():
with st.expander('Advanced Parameters'):
col2 1, col2 2 = st.columns(2)
with col2 1:
penalty = st.selectbox('Penalty', ['12','11", "elast
icnet', "none'])
tol = st.number_input('Tolerance (1e-4)',
value=1)/10000
fit intercept = st.radio('Intercept', [True,False])
class weight = st.radio('Class weight',
[None, "balanced'])
solver = st.selectbox('Solver', ['lbfgs', 'newton-
cg','liblinear’, 'sag’,
'saga'])
multi class = st.selectbox('Multi class’,
['auto','ovr', 'multinomial'])
warm start = st.radio('Warm start', [False,True])
with col2 2:
dual = st.radio('Dual or primal formulation',
[False,True])
C = st.number input('Inverse regularization
strength', 0.0, 99.0, 1.0, 0.1)
intercept_scaling = st.number_ input('Intercept
scaling', 0.0, 99.0, 1.0, 0.1)
random state = st.radio('Random state’,
[None, 'Custom'])
if random state == 'Custom':

341

CHAPTER 11 STREAMLIT USE CASES

random state = st.number input('Custom random
state', 0, 99, 1, 1)
max_iter = st.number input('Maximum iterations', o,
100, 100, 1)
verbose = st.number_input('Verbose', 0, 99, 0, 1)
11 ratio = st.radio('L1 ratio', [None,'Custom'])
if 11 ratio == 'Custom':
11 ratio = st.number input('Custom 11 ratio’',
0.0, 1.0, 1.0, 0.01)
#Download hyperparameters feature
hyperparameters = {'penalty':[penalty], 'dual’:[dual],
"tol':[tol], 'C':[C],
'fit_intercept':[fit intercept], 'intercept_
scaling':[intercept scaling],
"class_weight':[class weight],
'random_state':[random state],
‘solver':[solver], 'max_iter':[max_iter], 'multi_
class':[multi class],
'verbose':[verbose], 'warm start':[warm start], 'l1_
ratio':[11 ratio]}
st.download button(
label="Download hyperparameters’,
data=pd.DataFrame(hyperparameters).to_
csv(index=False).encode('utf-8"),
file name='Hyperparameters.csv',
)
return (penalty, tol, fit intercept, class weight, solver,
multi class, warm start, dual, C, intercept scaling,
random state, max_iter, verbose, 11 ratio)
Logistic regression training function
@st.cache _resource

342

CHAPTER 11 STREAMLIT USE CASES

def log train(df, feature cols, label col, test size, penalty,
tol, fit intercept, class weight, solver, multi class,
warm start, dual, C, intercept scaling, random state,
max_iter, verbose, 11 ratio):
x = df[feature cols]
y = df[label col]
x_train,x_test,y train,y test=train test split(x, y, test_
size=test size, random_state=0)
logreg = LogisticRegression(penalty=penalty, dual=dual,
tol=tol, C=C, fit intercept=fit intercept, intercept
scaling=intercept scaling, class weight=class weight,
random_state=random state, solver=solver, max_
iter=max_iter,
multi class=multi class, verbose=verbose, warm start=
warm start, 11 ratio=11 ratio)
logreg.fit(x_train,y train)
y pred = logreg.predict(x test)
return x_train, x test, y train, y test, y pred, logreg
Logisitic regression predictor function
def log real(logreg, df real, feature cols, label col):

x_test real = df real[feature cols]
y pred real = logreg.predict(x_test real)
x_pred real = df real.copy()

x_pred real[label col] =y pred real
return x_pred real.sort index()

Prediction statistics function

def stats(y test, y pred):
accuracy = metrics.accuracy score(y test, y pred)
precision = metrics.precision score(y test, y pred)
recall = metrics.recall score(y test, y pred)
f1 = metrics.f1_score(y test, y pred)

343

CHAPTER 11 STREAMLIT USE CASES

def

344

col2 1, col2 2, col2 3, col2 4 = st.columns(4)
with col2 1:
st.info(f'Accuracy: **{round(accuracy,3)}**"')
with col2 2:
st.info(f'Precision: **{round(precision,3)}**")
with col2 3:
st.info(f'Recall: **{round(recall,3)}**")
with col2 4:
st.info(f'F1 Score: **{round(f1,3)}**")
1r main(engine):
_, session id = get session()
insert row(session id, engine)
update row('lri',datetime.now().strftime(' %H:%M:%S
%d/%m/%Y"), session id, engine)
if st.session state['df train'] is not None:
df = st.session state['df train']
update row('datal rows',len(df),session_id,engine)
update row('lr2',datetime.now().strftime("%H:%M:%S
%d/%m/%Y"), session id,
engine)
st.title('Training")
st.subheader('Parameters")
col1, col2, col3 = st.columns((3,3,2))
with col1:
feature cols = st.multiselect('Please select
features', df.columns)
with col2:
label col = st.selectbox('Please select label’,
df.columns)
with col3:

CHAPTER 11 STREAMLIT USE CASES

test size = st.number input('Please enter test
size', 0.01, 0.99, 0.25, 0.05)

(penalty, tol, fit intercept, class weight, solver,
multi class,

warm_start, dual, C, intercept scaling, random_ state,
max_iter, verbose,

11 ratio) = 1r_hyperparameters()

try:

x_train, x test, y train, y test, y pred, logreg =
log train(df, feature cols, label col, test size,
penalty, tol, fit intercept, class weight, solver,
multi class, warm start, dual, C, intercept scaling,
random state, max_iter, verbose, 11 ratio)
st.subheader('Confusion Matrix"')
confusion matrix plot(y test, y pred)
st.subheader('Metrics")
stats(y_test, y pred)
st.subheader('ROC Curve')
roc_plot(x test, logreg, y test)
update row('lr3"',datetime.now().strftime("'%H:%M:%S
%d/%m/%Y"),
session_id, engine)
if st.session state['df real'] is not None:
try:
df real = st.session state['df real']
st.title('Testing")
update row('data2 rows',len(df real),
session_id, engine)
st.subheader('Predicted Labels")
x_pred real = log real(logreg, df real,
feature_cols, label col)

345

CHAPTER 11 STREAMLIT USE CASES

st.write(x_pred real)
update_row('lr4',datetime.now().
strftime("%H:%M:%S %d/%m/%Y"),
session_id, engine)
st.download button(
label="Download predicted labels',
data=pd.DataFrame(x_pred real).to
csv(index=False)
.encode('utf-8'),
file name='Predicted labels.csv',
)
except:
st.warning('Please upload a test dataset with
the same feature
set as the training dataset')
elif st.session state['df real'] is None:
st.sidebar.warning('Please upload a test dataset')
except:
st.warning('Please select at least one feature, a
suitable binary
label and appropriate advanced parameters')
elif st.session state['df train'] is None:
st.title('Welcome ")
st.subheader('Please use the left pane to upload your dataset')
st.sidebar.warning('Please upload a training dataset')

346

CHAPTER 11 STREAMLIT USE CASES

Training

Testing
Fredated abels

Figure 11-14. Output of Listing 11-16, with Pima Indians Diabetes
training dataset [21]

11.4. Summary

As you near the end of this chapter and approach the completion of

the entire book, it is becoming clear just how versatile and impactful
Streamlit can be in solving real-world problems. What started as a simple
Python tool for creating web applications has evolved into a powerful
framework capable of addressing a wide range of use cases. From data
visualization and time-series analysis to specialized applications like
SCADA data loggers and motor control dashboards, Streamlit has proven
its flexibility. Its ability to integrate with external systems, such as Arduino
microcontrollers, sensors, and other peripherals, shows its potential to
scale into embedded systems, bridging the gap between software and
hardware in practical, real-world applications. A key takeaway from this
chapter is the realization that Streamlit isn’t limited to just one type of

347

CHAPTER 11 STREAMLIT USE CASES

application or industry. It’s a highly adaptable tool, capable of serving
diverse needs—whether for data warehousing, machine learning as a
service, or more specialized areas like industrial automation and IoT
systems.

Ultimately, Streamlit is only as powerful as the developer’s creativity
and the tech stack they choose. As you continue exploring and building
with Streamlit, the possibilities are endless, and this chapter has only
scratched the surface of what you can accomplish. Congratulations on
reaching this point! You now have the tools and knowledge to tackle a
wide range of real-world challenges using Streamlit. Your journey toward
creating efficient, impactful Python web applications is just beginning.

348

CHAPTER 12

Testing in Streamlit

Testing is a vital quality assurance process that verifies software
functionality, detects issues early, and ensures reliability. By validating
requirements and promoting best practices, testing enhances stability,
maintainability, and user satisfaction—especially in dynamic platforms
like Streamlit.

12.1. Principles of Testing

Testing is the process of verifying and validating that software behaves as
intended, aiming to identify defects, errors, or missing requirements early
in the development cycle. It involves creating test cases that check the
code’s output against expected results, ensuring reliability and consistency
across scenarios. More than just finding bugs, testing also confirms that
software meets requirements and follows best practices, contributing

to its robustness and maintainability. In platforms like Streamlit, where
rapid prototyping and interactive features are common, thorough testing
is crucial to ensure accurate and dependable functionality. Ultimately,
testing is a key aspect of quality assurance that supports software stability
and user satisfaction.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 349
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_12

https://doi.org/10.1007/979-8-8688-1826-4_12#DOI

CHAPTER 12 TESTING IN STREAMLIT

12.1.1. What Is Testing?

Testing, at its core, is the process of verifying and validating that software
performs as intended. It is a systematic approach to identifying defects,
errors, or missing requirements in a piece of code. Rather than relying
solely on manual observation or user feedback after deployment, code
testing aims to uncover issues early in the development lifecycle. This
proactive strategy significantly reduces the risk of costly and disruptive
bugs in production environments.

From a theoretical perspective, code testing can be seen as an exercise
in building confidence in the correctness and reliability of software. It
involves creating a set of conditions, or test cases, that evaluate different
aspects of the code by comparing actual outputs with expected results.
The goal is to ensure the code behaves predictably and consistently across
various scenarios.

Itis important to recognize that testing is not merely about finding
bugs. It also involves validating that the code meets specified requirements
and adheres to best practices. A well-tested application reflects robustness,
maintainability, and a higher degree of user satisfaction. In the context of
Streamlit, which supports rapid prototyping and deployment of data-
driven web applications, thorough testing helps ensure that analytical
insights and interactive elements remain accurate and dependable.

Ultimately, code testing is a key component of quality assurance,
offering tangible evidence of a software’s functionality and stability. It is an
essential part of the development process, regardless of the application’s
complexity.

12.1.2. Benefits of Testing

Incorporating code testing into your general development workflow—
not just in Streamlit projects—is essential and can significantly enhance
the quality and longevity of your applications. It helps detect bugs early,

350

CHAPTER 12 TESTING IN STREAMLIT

allowing you to identify and fix issues before they propagate through

the system and become more complex and difficult to resolve. This
reduces debugging time and effort, enabling faster development cycles.
Additionally, writing tests encourages developers to produce cleaner, more
modular, and maintainable code.

Creating test cases also promotes a deeper understanding of the code’s
functionality and potential edge cases, leading to better design decisions.
When collaborating with other developers, well-written tests allow fresh eyes to
quickly grasp the behavior of the code, making it easier to build upon existing
components. In this way, tests act as an additional form of documentation.

Testing also enhances reliability. Well-tested code is less likely to
fail in production, minimizing downtime and reducing user frustration.
This is particularly important for Streamlit applications, which often
involve critical data analysis and visualizations. Thorough testing ensures
that interactive elements and visual outputs behave as expected across
different browsers and user inputs—an essential factor when your
application is intended for a broad audience.

12.1.3. Types of Testing

There are numerous types of code testing, each serving a specific purpose
and targeting different aspects of a software system. For Streamlit
applications, two fundamental categories are especially relevant: unit
testing and integration testing.

Unit testing focuses on verifying individual components or units
of code in isolation. A unit is typically the smallest testable part of an
application, such as a function or method. The goal is to ensure that each
unit performs its intended task correctly, independent of other parts of the
system. In the context of Streamlit, this might involve testing functions that
process data, generate plots, or handle user inputs. Unit tests are usually
automated and run frequently during development, providing quick
feedback on the correctness of individual code units.

351

CHAPTER 12 TESTING IN STREAMLIT

Integration testing, on the other hand, examines how different units
or components interact with one another. It verifies that the interfaces
between these components function properly and that the application
behaves as expected when the parts are combined. For Streamlit
applications, integration testing might involve checking the interaction
between input widgets and output displays, or ensuring seamless
communication between the app and external data sources or APIs.
Integration tests help confirm that the application works as a cohesive
whole, not just as isolated pieces.

Beyond these two types, other testing methods exist—such as
system testing, which evaluates the entire application against specified
requirements, and acceptance testing, which confirms that the application
meets user expectations. However, for the scope of this chapter, a solid
understanding of unit and integration testing provides a strong foundation
for building robust and reliable Streamlit applications.

By understanding the principles, benefits, and various types of code
testing, developers can build Streamlit applications that are not only
functional, but also reliable, maintainable, and user-friendly. This chapter
will explore practical examples and techniques for implementing effective
testing strategies in your Streamlit projects.

12.2. Why Test in Streamlit?

Streamlit applications have evolved beyond demos to support real
production use cases, making thorough testing essential as they grow in
scope. A well-structured, modular codebase—with separate folders for
APIs, logic, and utilities—ensures a reliable user experience. Because
of this modularity, each component can and should be independently
verified using unit tests.

352

CHAPTER 12 TESTING IN STREAMLIT

12.2.1. Behavioral and Logical Testing

Streamlit applications are no longer limited to demo purposes—they

can now evolve to support real production use cases. As the scope of an
application grows, it becomes increasingly important to test its underlying
components to ensure a correct and seamless end user experience.

Since Streamlit applications are more than just Ul components—as
discussed in previous chapters—a well-structured Streamlit project should
follow an extensible and modular folder organization. This typically
includes directories for API invocations, logical components, and utility
functions. These modules directly influence the application’s behavior and
user experience, making thorough testing essential.

Given the modular nature of these components, each file can—and
should—be tested individually using unit tests. This ensures that every
part of the system functions correctly in isolation, contributing to the
overall reliability and maintainability of the application.

12.2.2. User Interface Testing

Once the application is rendered and presented to the user, it is important
to ensure that the user interface behaves as expected. This includes
verifying that actions like button clicks are properly registered and that text
inputs correctly update their outputs to reflect user interactions.

This process is known as App Testing, a specific type of testing
focused on user interface components. It is especially useful for custom
components to ensure the Ul behaves as intended. For example, this
can be applied to the Tab Bar from the Extra-Streamlit-Components
package. Since this component is built using React and wrapped for use in
Streamlit—rather than being a built-in feature—it’s a good candidate for
app testing to confirm its behavior aligns with user expectations.

353

CHAPTER 12 TESTING IN STREAMLIT

12.3. Testing Streamlit Applications

Streamlit facilitates testing, by providing its own native App Testing
framework streamlit.testing.v1. This enables developers to build and
conduct headless tests without rendering their applications on a browser.
It can even be used to simulate user input and examine rendered outputs.
This framework can be run using PyTest and can even be automated in a
CI environment such as GitHub Actions.

12.3.1. Setting Up Testing Environment

Firstly, we need an application to test. Listings 12-1 and 12-2 display
the code for a simple calculator app that supports basic mathematical
operations between two numbers. Figure 12-1 displays the associated
application for this test.

Listing 12-1. main.py

import streamlit as st
from utility import calculate

st.title('Simple Calculator')

numl = st.number_ input('Enter first number', value=0.0,
key="INPUT 1')

num2 = st.number input('Enter second number', value=0.0,
key="INPUT 2')

operation = st.selectbox('Select operation', ['+', '-', '*',
/'], key='OPERATION")

result = None

if st.button('Calculate', key='BUTTON'):
result = calculate(operation, numi, num2)
if result is None:

354

CHAPTER 12 TESTING IN STREAMLIT

st.error('Error: Cannot divide by zero')
else:

st.write(f'Result: {result}')
Listing 12-2. utility.py

def calculate(operation: str, numi: float, num2: float):
if operation == '+':
return numl + num2

elif operation ==
return numl - num2

elif operation == "*':
return numl * num2

elif operation == '/':
if num2 != o:

return numl / num2
return None

Simple Calculator

Figure 12-1. Simple Calculator app

355

CHAPTER 12 TESTING IN STREAMLIT

To test the application, we need to install a Python package called
PyTest, which will assist in constructing unit tests. You can install it using
the command pip install pytest.

12.3.2. Writing Tests

Tests such as the one shown in Listing 12-4 should typically be placed
in a separate folder at the root level of the project, such as my_project/
tests/. They should follow the naming convention with a test_ prefix, which
allows testing tools like PyTest to recognize and execute them. Below is
an example of a test file for a utility method. This is a unit test, as it targets
specific parts of the application’s code based on expected use cases.

Since the utility file is used as a module in the main application, we will
need to expose it in the test folder by adding Listing 12-3.

Listing 12-3. tests/__init__.py

import utility

Listing 12-4. tests/test_utility.py

import pytest
from utility import calculate

@pytest.mark.parametrize(
'operation, numi, num2, expected',
[
('+IJ -2, 7, 5):
('+', 5.5, 2.5, 8.0),
(*-', 10, 4, 6),
(*-', o, 0, 0),
("*', 2, 6, 12),
("*', -3, 4, -12),

356

CHAPTER 12 TESTING IN STREAMLIT

('*"', 2.5, 4, 10.0),
(‘/', 1, 2, 0.5),
(‘/', 10.0, 2.0, 5.0),

1,
)
def test calculate basic_operations(operation, numi, num2,
expected):

assert calculate(operation, numi, num2) == expected

@pytest.mark.parametrize(
'operation, numi, num2',

[
(‘/', 1, 0),
(‘/', 10.0, 0),
(‘/*, 0, 0),
]J

)
def test division by zero(operation, numi, num2):
assert calculate(operation, numi, num2) is None

Test invalid operations
@pytest.mark.parametrize(
'operation, numi, num2',
[
('%', 5, 3),
(‘abc', 5, 3),
]J
)

def test invalid operations(operation, numi, num2):
assert calculate(operation, numi, num2) is None

357

CHAPTER 12 TESTING IN STREAMLIT

Another type of test is App Testing, which verifies that the entire
application reacts to user interactions as expected. This testing package is
included by default with Streamlit, so no additional packages are required.
The app test should involve manipulating the number inputs, clicking
the button, and verifying that the output contains the expected result.
Listing 12-5 below is an example of the App Test.

Listing 12-5. tests/test_main.py
from streamlit.testing.vl import AppTest

def test main():
at = AppTest.from file('../main.py").run()

at.number input[0].set value(10).run()
at.number input[1].set value(4).run()
at.selectbox[0].set value('-").run()
at.button[0].click().run()

assert at.markdown[0].value == 'Result: 6.0'

at.number input[0].set value(2).run()
at.number input[1].set value(6).run()
at.selectbox[0].set value('*").run()
at.button[0].click().run()

assert at.markdown[0].value == 'Result: 12.0'

at.number input[0].set value(10).run()
at.number input[1].set value(2).run()
at.selectbox[0].set value('/").run()
at.button[0].click().run()

assert at.markdown[0].value == 'Result: 5.0'

at.number input[0].set value(10).run()
at.number input[1].set value(0).run()
at.selectbox[0].set value('/").run()

358

CHAPTER 12 TESTING IN STREAMLIT

at.button[0].click().run()
assert at.error

at.number input[0].set value(-5).run()
at.number input[1].set value(3).run()
at.selectbox[0].set value('+").run()
at.button[0].click().run()

assert at.markdown[0].value == 'Result: -2.0

To run these tests, open a terminal session and type pytest. PyTest will
automatically begin by looking in the test folder, searching for files prefixed
with test_ while ignoring __init__.py files. It will then execute the methods
that are also prefixed with fest_, ensuring that only actual tests are run and
not helper methods.

It is worth noting that AppTest as of Streamlit 1.47.x is limited in
controlling specific native components and not everything. Components
like st.data_editor and st.dialog are not supported in this type of test.

For unit tests, PyTest will use parameterized tests, which involve
invoking the test method multiple times with different inputs and
comparing the results. For the App Test, only one method will be run,
simulating interactions within a single session. These tests will also be
recognized by an IDE, allowing you to run them easily with a mouse
click on the green triangles. However, if you choose to run them from the
terminal, the output will be the same as shown in Figure 12-2.

359

CHAPTER 12 TESTING IN STREAMLIT

Figure 12-2. PyTest output

12.4. Automated Testing
with GitHub Actions

Testing Streamlit applications can be automated with GitHub Actions,
ensuring that whenever a push is made to a remote repository, automated
test is implemented and the result immediately displayed. This ensures
that all pushes comply with any testing requirements you have and also
eliminates the need for manually conducting such tests. You may also

use the same testing script created using PyTest and the Streamlit testing
framework detailed in Section 12.2. The steps to implement automated
testing with GitHub Actions is detailed in the following sections.

12.4.1. Setting Up the Workflow

To implement a GitHub Action through a repository, you must first create
a workflow. This can be done by creating the folder structure shown in
Figure 12-3. You must then create a fest.yaml file that will tell GitHub how

360

CHAPTER 12 TESTING IN STREAMLIT

to execute the test explained in Section 12.4.2, and finally you must place
a requirements.txt file in your root directory listing all the dependencies
required for the Streamlit application.

. github
1
workflows

(I

test.yaml|

Figure 12-3. GitHub Actions workflow folder structure

12.4.2. Creating the Test Script

To configure GitHub Actions, you will need to create a test.yaml script that
tells GitHub how to execute the test. This file must be placed in the folder
structure detailed in Section 12.4.1. Please note that in the test.yaml file,
you must include the path to two files, namely, the Streamlit application,
i.e., tests/app.py and the PyTest file, i.e., tests/test.py. You may use the test
script shown in Listing 12-6 as a sample.

Listing 12-6. test.yaml
name: Streamlit Testing

on:
push:
branches:
- main
pull request:
branches:

361

CHAPTER 12 TESTING IN STREAMLIT
- main

jobs:
test:
runs-on: ubuntu-latest

steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up Python
uses: actions/setup-python@vs
with:
python-version: '3.9'

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
pip install pytest

- name: Run Streamlit app and tests
run: |
nohup streamlit run <path to applicaton> &
pytest <path to PyTest script> --maxfail=1 --disable-
warnings -q

Subsequently, when you make a push to the main branch of your
repository, a test will be automatically conducted and the results displayed
in the Actions tab of your GitHub repository. Should the test fail, you can
access the logs as shown in Figure 12-4.

362

CHAPTER 12 TESTING IN STREAMLIT

© Push on main

| @ analyze (pythca

L]
L]
L
-]
-]
L]
L]
L]
-]
L]

Figure 12-4. GitHub Actions automated testing tab

12.5. Summary

This chapter emphasized the crucial role of testing in Streamlit
development, progressing from simple demos to robust applications. We
covered core testing principles, focusing on early bug detection, code
quality, and reliability. We specifically explored unit and integration
testing, which are particularly relevant for Streamlit. We highlighted

the importance of testing behavior, logic, and Ul rendering in Streamlit
applications. Practical examples were provided to demonstrate how to
set up testing environments and write effective unit and App tests. PyTest
was used for unit testing, while streamlit.testing.v1 was introduced for
simulating user interactions, with parameterized tests for efficiency.

Test early and often is the key takeaway. Integrating testing into CI/

CD pipelines using GitHub Actions ensures that Streamlit applications
remain reliable and maintainable. We encourage further exploration of
testing tools and the refinement of strategies, especially for more complex
projects. This chapter serves as a foundation for building high-quality
Streamlit applications through consistent testing.

363

CHAPTER 13

Streamlit for Al

Streamlit’s nature as a web framework opens doors for web developers
to use it with any type of business or technology. Artificial Intelligence,
particularly in the generative domain—including Large Language Models
(LLMs) and Retrieval-Augmented Generation (RAG) models—is now
more accessible than ever. Companies and corporations are competing
to deliver better, faster, and more accessible models by providing a
wide range of LLMs through APIs. This approach frees end users from
relying solely on official portals to harness the immense capabilities of
an LLM. In this chapter, we will explore LLMs, learn how to use them
programmatically, and build a demo application in Streamlit that
functions as a personal web information agent.

13.1. What Are LLMs and How Are
They Useful?

LLMs are large-scale deep learning models, typically consisting of billions
of parameters. Their purpose is not restricted to a single task; they can be
applied to a variety of use cases. LLMs are trained on massive amounts of
data from diverse domains, providing them with broad general intelligence
across numerous areas. Fundamentally, LLMs are predictive models,
meaning their outputs are shaped by the nature and quality of the data
they were trained on.

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Fernandez 2025 365
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_13

https://doi.org/10.1007/979-8-8688-1826-4_13#DOI

CHAPTER 13 STREAMLIT FOR Al

LLMs operate on the concept of tokens. Tokens are the building blocks
of sentences and can include words, numbers, or symbols. A sequence of
tokens is used as input to the LLM, which then produces a sequence of
output tokens. The input tokens establish a context about a specific topic
within the LLM. Based on the data it was trained on, the output tokens
are generated statistically, reflecting the model’s previously acquired
knowledge.

The architecture of an LLM typically begins with a transformer
layer, which processes the input text and converts it into a mathematical
representation of the context. This means that no matter how sophisticated
an LLM appears, its performance ultimately depends on the model’s size,
architecture, and the quality and quantity of the training data. Conversely,
poor-quality data—whether misleading, poorly written, or inaccurate—
can negatively affect the output, leading to grammatical errors, spelling
mistakes, or even factual inaccuracies in the final result.

Real-world use cases of LLMs range from using the models
independently to integrating them with other software to assist in
performing specific tasks. Some examples include the following.

13.1.1. Summarization

A vast number of parameters in LLMs fundamentally store the information
they were trained on in the form of statistical relationships and patterns.
This allows them to summarize the information they were exposed to
during training. Since the same topics can appear in various forms across
different sources within the training data, an LLM can serve as a data
summarizer when queried about these topics.

366

CHAPTER 13 STREAMLIT FOR Al

For example, we asked Gemini 1.5 Flash why the sky is blue, and it
provided the following output:

The sky is blue due to a phenomenon called Rayleigh scatter-
ing. Sunlight is made up of all the colors of the rainbow. When
sunlight enters the Earth's atmosphere, it collides with tiny air
molecules (mostly nitrogen and oxygen). These molecules are
much smaller than the wavelengths of visible light.

The output was likely influenced by the data the model was trained on,
as the input consisted only of a question without any additional details.
Additionally, a pre-trained LLM can accept varying input sizes depending
on its architecture. Generally, larger models have a greater capacity to
handle bigger inputs without losing significant context. This enables
LLMs to build a detailed understanding of the input, which can then be
used for tasks like rephrasing or summarization. For example, Chapter 3
was provided as an input prompt to Gemini 1.5 Flash, with a request to
summarize it in less than 80 words. The following is the summary:

Chapter 3 details Streamlit's UI architecture. It explains how
to customize the interface (themes, colors, layout) using both
code and configuration files. The chapter covers page organi-
zation with sidebars, columns, and expanders, and shows
how to create multi-page and sub-page applications. Dynamic
content display using placeholders and progress bars is also
demonstrated, along with best practices for modular applica-
tion development.

We can observe that the LLM’s summary primarily draws information
from the abstract and summary sections of the chapter. This is because
these sections typically contain the most relevant information related to
the input prompt. We can also experiment with a different type of input
to obtain the LLM’s summarized opinion on a specific aspect of the same
chapter. The following input prompt was provided to the same model:

367

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3

CHAPTER 13 STREAMLIT FOR Al

The following is a chapter which is part of a book about
Streamlit. What UI component discussed in that chapter can
be useful to most applications and why:

[Chapter 3 content]

And the output was this:

Based on Chapter 3, the UI component most useful to most
Streamlit applications is the placeholder (st.empty or st.side-
bar.empty). The reason is its versatility and power in handling
dynamic content. The chapter highlights its use for: Displaying
content out of order or on demand: This is crucial for applica-
tions that need to update information asynchronously or
based on user interactions without a complete page reload.
This improves responsiveness and user experience signifi-
cantly. Creating dynamic elements: The example of a real-
time clock demonstrates how a placeholder can be used to
update content repeatedly within a loop, creating dynamic
visualizations. This extends to any dynamic element, such as
charts updating with new data or progress bars showing the
status of long-running tasks. While other components like
sidebars, columns, and expanders are important for page
organization and structure, the placeholder’s ability to handle
dynamic updates makes it a uniquely valuable tool applicable
across a wide range of Streamlit applications, from simple
dashboards to complex interactive tools. The other compo-
nents enhance the presentation of data; placeholders handle
the dynamic updating of the data itself.

The model built a context around the entire chapter and offered an

opinion on a specific Streamlit component, highlighting it as the most

useful due to its versatility. It also provided examples to support this

viewpoint.

368

https://doi.org/10.1007/979-8-8688-1826-4_3
https://doi.org/10.1007/979-8-8688-1826-4_3

CHAPTER 13 STREAMLIT FOR Al

13.1.2. Content Generation

We have seen examples where large inputs are used to generate smaller
outputs, mostly in text form. This is because LLMs fundamentally operate
on tokens. However, with additional components and fine-tuning for
content types beyond text, a model can generate new content and earn the
label of a Generative LLM. The content that can be generated is not limited
to images; it also depends on the training data used for fine-tuning the
model. LLMs can be modified and fine-tuned to generate videos, audio, or
specific types of text, such as poetry or code.

The quality of the content it produces will align with the quality
of its input data. The well-known concept of garbage in, garbage out,
frequently cited in machine learning domains, applies to LLMs as well.
One reason LLMs are more widely used for image and video generation is
the abundance of high-quality visual content. Additionally, the standard
for generated images and videos is relatively low, and these outputs are
generally accepted by most.

LLMs can certainly speed up coding and save developers time by
generating repeated or well-known code snippets. However, they still lack
the ability to write sophisticated, high-quality code. This is partly because
much of the code available in the open source domain does not meet a
specific standard, and the quality tends to be skewed toward the lower end
due to the large amount of poorly written code used to train LLMs.

13.1.3. Retrieval Augmented Generation

LLMs, on their own, are highly capable. Allowing LLMs access to other
software and data stores to perform actions can significantly expand their
capabilities. This fundamentally enables LLMs to cross-check live data
from various sources, whether from the Internet or local data, both before
and during the output token generation process. This built-in power of
retrieving and augmenting information during content generation is

369

CHAPTER 13 STREAMLIT FOR Al

known as Retrieval-Augmented Generation (RAG). Not every LLM is a
RAG model, but those that are extended in this way possess enhanced and
more accurate capabilities than standard LLMs. Both Llamalndex and
LangChain enable RAG systems. Llamalndex streamlines search-and-
retrieval, while LangChain is a modular platform supporting many use
cases. Popular RAG platforms include Langchain with a Pinecone vector
database and Llamalndex (which contains its own vector DB), which have
become essential tools for developers building knowledge-enhanced Al
applications. RAG represents an architectural model rather than a single
product, and it is indispensable and intricate in real-world applications
across industries from customer support to financial analysis.

13.2. Different Ways to Interact with LLMs

LLMs can be accessed in various ways, depending on your use case,
budget, and required level of privacy. Some of these methods include
interacting with the official web page of the model, calling APIs over the
Internet, or even self-hosting the model on a machine or a cluster of
machines for local access.

13.2.1. Official Web Pages

Creators of LLMs typically build web pages to allow people to use their
models. They tailor the user interface (UI) to the capabilities of the model
they provide, making it clear to users that they can input various content
types, not just text prompts. Figure 13-1 shows the prompt window of
Gemini, demonstrating the ability to attach voice, images, or videos as part
of the prompt. This additional content helps formulate the overall context
and can influence the final output.

370

CHAPTER 13 STREAMLIT FOR Al

GeminiUl »

Figure 13-1. Gemini prompt on Google Al Studio

13.2.2. Application Program Interfaces

The average user typically interacts with a final product, but LLMs
accessible through a web page might not suit the needs of some, such
as developers. Those who want to integrate the power of LLMs into their
software products, either on a pay-per-use basis or for free, can leverage
APIs that expose LLMs to developers.

The method of invocation for these models remains the same—by
tokens—regardless of the medium used. When APIs are utilized, they
can be scaled to handle billions of calls, making free usage of LLMs
unsustainable. This is where token monitoring and billing come into
play. LLM hosts track API calls by grouping usage according to the API
token used. The total input and output tokens processed by the LLM
can then be used to calculate the bill, if applicable. A new cost-efficiency
mechanism, tokens per dollar per watt, helps assess the financial feasibility
of processing a given token using a specific amount of electrical power.

371

CHAPTER 13 STREAMLIT FOR Al

APIs for LLMs can also be created by those who offer LLMs for use
over a web page. For instance, Google allows the creation of API keys at
https://aistudio.google.com/app/apikey, which can be used to invoke
Gemini models. The following figure shows how multiple API keys can be
created and used in a Curl command to make an HTTP call to Gemini 1.5
Flash with a sample input as shown in Figure 13-2 below.

Google Al Studio

Figure 13-2. Google API Studio API key generation

13.2.3. Self-Hosting and Deployment

Using APIs and web pages to interact with LLMs means submitting your
prompts to a server before invoking the LLM itself. For most use cases, this
is convenient, as it removes the hassle of managing and hosting an LLM
on your own. However, if privacy is a key requirement, the safest option is
to deploy the LLM on your own infrastructure. Self-hosting LLMs comes
with its own costs, such as the initial investment in hardware, ensuring
areliable energy supply, and managing clusters of machines to support
heavy traffic to the model.

372

https://aistudio.google.com/app/apikey

CHAPTER 13 STREAMLIT FOR Al

Many LLMs are available for download and can be run on your
machine. One example is Llama, created by Meta. An easy way to get
started with Llama is by downloading it from https://ollama. com/
download, which installs a desktop application that, in turn, installs
command-line tools to manage different Llama models and run them
as shown in Figure 13-3.

The following Figures 13-4 and 13-5 show the process of installing
Llama 3.2 on a MacBook Pro i9. Performance may vary depending on the
machine, but smaller models with fewer than three billion parameters can
even run on mobile phones.

Figure 13-3. Installing Llama3.2

373

https://ollama.com/download
https://ollama.com/download

CHAPTER 13 STREAMLIT FOR Al

Figure 13-4. Running Llama3.2

Figure 13-5. Prompting Llama3.2

374

CHAPTER 13 STREAMLIT FOR Al

Ifyou want to prompt the model programmatically, you can do so by
calling an endpoint on the local host, which is exposed when the model is
run through the terminal. For more information, visit https://qgithub.
com/ollama/ollama/blob/main/docs/api.md.

13.3. Integrating LLMs with Streamlit

Streamlit is a web framework, and LLMs are typically deployed as
independent services to avoid tight coupling with other software. This
means LLMs can be used in Streamlit as if they were any other service, and
their method of invocation can be done via network calls. This setup works
whether the Streamlit server and LLM server are on the same machine or
different machines.

The following steps outline how to replicate the behavior of LLM
websites, where users supply prompts, call the LLM with the prompt, wait
for the response, and render the output in a stream UI format.

13.3.1. Building an Input User Interface

A basic LLM website typically requires three main Ul components:
a text input, a send button, and an output area. Listing 13-1 takes in
an input and displays dummy text when the send button is clicked
as shown in Figure 13-6.

Listing 13-1. sample_text_input.py
import streamlit as st

st.title('LLMs in Streamlit')

text = st.text area('Write prompt here')

sent = st.button('Send")

if sent:
output = 'Dummy Output' # Replace with LLM call
st.text(output)

375

https://github.com/ollama/ollama/blob/main/docs/api.md
https://github.com/ollama/ollama/blob/main/docs/api.md

CHAPTER 13 STREAMLIT FOR Al

LLMs in Streamlit

Figure 13-6. LLM sample text input user interface (output of
Listing 13-1)

13.3.2. Setting Up an HTTP Connection

For demonstration purposes, we will use an LLM through an API. We can
build on top of Gemini’s AP, for which we generated an API key earlier.
To start, let us generate the key using the steps mentioned in previous
sections of this chapter. Since API keys are sensitive data, they should not
be hardcoded into your application. Instead, we will add the key to our
environment variables. This can be done by adding Listing 13-2 to a file
named .env, located in the same directory as your Streamlit application’s
main file.

Listing 13-2. .env
API_KEY=<YOUR_API_ KEY HERE>

The API key can then be read in Python as shown in Listing 13-3. First,
you need to install the python-dotenv package by running pip install

376

CHAPTER 13 STREAMLIT FOR Al

python-dotenv to use a method called load_env. This method reads the
.env file and adds the key-value pairs to the system environment, making
them easily accessible from your code.

Listing 13-3. read_variables.py

import os
from dotenv import load dotenv

load_dotenv()
API KEY = os.getenv('API KEY')
print(f'{API_KEY=}")

For this example, we are using Gemini’s API from Google Al Studio.
The curl command provided on the API key generation page is more suited
for usage in the terminal or CMD. To recreate it in Python, we can apply
the knowledge learned in previous chapters and use the requests package
in Python as shown in Listing 13-4 below.

Listing 13-4. gemini_input.py

import os
import requests
import json

API_KEY = os.getenv('API_KEY')
URL = "https://generativelanguage.googleapis.com/vibeta/models/
gemini-1.5-flash-latest:generateContent’

def call 1lm(text: str) -> str:
body = {
"contents': [{
"parts': [{'text': text}]
}]

377

CHAPTER 13 STREAMLIT FOR Al

response = requests.post(
URL, params={'key': API KEY}, headers={'Content-Type':
"application/json'},
data=json.dumps(body)
)
return response.json().get('candidates', [{}])[0].
get('content', {}).get('parts’, [{}])[0].get(text")

13.3.3. Creating the Stream Effect

Now that we have a method for calling an LLM in code, we need a way to
present its output. For our API use case, there is only an HTTP method,
and no WebSocket method. A WebSocket could have streamed the
LLM’s output to our Streamlit app token by token, allowing us to render
the output word by word and create the famous LLM-streamed output
experience.

Since this is not the case, we can circumvent this limitation and
simulate our own stream effect. This is possible because Streamlit has
a method called write_stream, which takes in an iterable of strings and
renders the output in a stream-like fashion. Fortunately, we can not only
convert the LLM’s block output into an iterable of strings, but also adjust
the speed at which each string appears in the iterable.

To start, we need to create a method that takes in a string and returns
an iterable of strings. The iterable should introduce a delay between
each element to mimic the behavior of LLM stream output. This can
be achieved by pausing the Python interpreter for a few milliseconds.
The following method as shown in Listing 13-5 accomplishes this.

378

CHAPTER 13 STREAMLIT FOR Al
Listing 13-5. string iterable_converter.py

import time
from typing import Iterable

def yield text(text: str) -> Iterable:
for word in text.split(' '):

yield word +
time.sleep(0.01)

13.3.4. Building an LLM Application
with Streamlit

To bring everything together, this section combines the concepts from
previous sections to build a fully-fledged LLM Streamlit application. This
application takes text input from the user, invokes the Gemini 1.5 Flash
AP], and displays the output in a streamed fashion. Listing 13-6 displays
the complete code for the application.

Listing 13-6. streamlit_llm_application.py

import os

import time

import requests

import json

import streamlit as st

from dotenv import load dotenv
from typing import Iterable

def call 1lm(text: str) -> str:
"""Call LLM using direct requests to Google API
body = {
"contents': [{
"parts': [{'text': text}]

mnn

379

CHAPTER 13 STREAMLIT FOR Al

}]
}
try:
response = requests.post(
URL,
params={'key': API KEY},
headers={'Content-Type': 'application/json'},
data=json.dumps(body),
timeout=30
)

response.raise for status() # Raise an exception for
bad status codes

response_data = response.json()
response_text = response data.get('candidates’,

[{}])[0].get("content", {}).get('parts’, [{}])[0].
get('text', ')

if not response text:
return "No response generated. Please try again."

return response text

except requests.exceptions.RequestException as e:
return f"Error calling API: {str(e)}"

except (KeyError, IndexError) as e:
return f"Error parsing response: {str(e)}"

def yield text(text: str) -> Iterable[str]:
"""Yield text word by word for streaming effect

mnn

for word in text.split(' '):
yield word + ' '

380

CHAPTER 13 STREAMLIT FOR Al

time.sleep(0.02) # Slightly slower for better
readability

def main():
load_dotenv()

st.title('LLM Chat with Streamlit')

Main interface
st.write("Enter your prompt below and click Send to get a
response from Gemini.")

text = st.text area(
"Your prompt:’,
height=120,
placeholder="Ask me anything..."

)
sent = st.button('Send', type="primary")

Handle submission
if sent:

response_text = call llm(text)
st.write stream(yield text(response text))

if _name__ == "' main_ ':
API KEY = os.getenv('API_KEY')
URL = "https://generativelanguage.googleapis.com/vibeta/
models/gemini-1.5-flash-latest:generateContent’

main()

The output is as expected: we can prompt the model with any text and
see the result displayed in a streamed effect. Check the difference between
Figures 13-7 and 13-8.

381

CHAPTER 13 STREAMLIT FOR Al

LLMs in Streamlit

Figure 13-7. LLM stream response midway through rendering

LLMs in Streamlit

Figure 13-8. LLM response after rendering

382

CHAPTER 13 STREAMLIT FOR Al

Another way to invoke hosted LLM models is via official pip packages
as shown in Listing 13-7. In our previous example, this can be done
by using genai module from the pip package google. This comes with
multiple benefits, like encapsulating the HTTP invocation in one line,
as well as support streaming of the response live, token by token—or
batch by batch—from Gemini directly instead of waiting for the whole
response to be ready before receiving it. Using it will give a more appealing
user experience as shown in Figure 13-9 below.

Configuration

LLMs in Streamlit

Figure 13-9. LLM response streaming

Listing 13-7. streamlit_llm_streaming application.py

import os

import time

import requests

import json

import streamlit as st

from dotenv import load dotenv
from typing import Iterable

383

CHAPTER 13 STREAMLIT FOR Al
from google import genai

def call 1lm requests(text: str) -> str:
"""Call LLM using direct requests to Google API
body = {
"contents': [{
"parts': [{'text': text}]

mnn

}
}

response = requests.post(
URL, params={'key': API KEY}, headers={'Content-Type':
"application/json'},
data=json.dumps(body)
)
response_text = response.json().get('candidates', [{}])[0].
get('content', {}).get('parts’, [{}])[0].get(text")

return response text

def call 1lm genai(text: str) -> str:
"""Call LLM using google-ai-generativelanquage library
try:

nnn

Create client
client = genai.Client(api_key=API KEY)

Generate content

response = client.models.generate content(
model="gemini-1.5-flash-latest’,
contents={"parts': [{'text': text}]}

)

return response.candidates[0].content.parts[0].text
except Exception as e:

384

CHAPTER 13 STREAMLIT FOR Al

return f"Error calling LLM with google-ai-
generativelanguage: {str(e)}"

def call 1lm genai_stream(text: str) -> Iterable[str]:
"""Call LLM using google-ai-generativelanguage library with
streaming"""

try:
Create client
client = genai.Client(api_key=API KEY)

Generate content with streaming

response = client.models.generate content stream(
model="gemini-1.5-flash-latest’,
contents={"parts': [{'text': text}]}

)

for chunk in response:
if chunk.candidates and chunk.candidates[0].
content.parts:
text_chunk = chunk.candidates[0].content.
parts[o].text
if text_chunk:
yield text chunk
time.sleep(0.01) # Small delay for
visual effect
except Exception as e:
yield f"Error calling LLM with streaming: {str(e)}"

def yield text(text: str) -> Iterable[str]:
"""Yield text word by word for streaming effect"""
for word in text.split(' '):

yield word +
time.sleep(0.01)

385

CHAPTER 13 STREAMLIT FOR Al

def main():

386

load_dotenv()
st.title('LLMs in Streamlit')

API method selection
st.sidebar.title("Configuration™)

api options = ["Direct Requests", "Google AI
Generativelanguage Library"]

api_method = st.sidebar.selectbox(
"Choose API Method:",
api options,
help="Select how to call the Google Gemini API"

)

Streaming option for google-ai-generativelanguage
use streaming = False
if api method == "Google AI Generativelanguage Library":
use_streaming = st.sidebar.checkbox(
"Use Streaming",
value=True,
help="Stream the response in real-time (only
available with google-ai-generativelanguage library)"

)

Main interface
text = st.text _area('Write prompt here', height=100)
sent = st.button('Send', type="primary")

if not sent or not text.strip():
return

if not API KEY:

CHAPTER 13 STREAMLIT FOR Al

st.error("API_KEY not found. Please set it in your
.env file.")
return

Show which method is being used
if api method == "Direct Requests":
st.info("¢% Using direct HTTP requests to Google API")
with st.spinner("Generating response..."):
response text = call 1lm requests(text)
st.write stream(yield text(response text))

elif api _method == "Google AI Generativelanguage Library":
st.info(" Using google-ai-generativelanguage library

with streaming")
st.write stream(call 11m genai stream(text))

else:
st.error("Selected API method is not available. Please
install the required library or choose a different
method.")

if _name_ == "' main_':
API_KEY = os.getenv('API KEY")
URL = 'https://generativelanguage.googleapis.com/vibeta/
models/gemini-1.5-flash-latest:generateContent’

main()

13.4. Summary

LLMs have become the new focus of the technology community due to the
unique benefits they provide. Using an LLM can be the final solution, but
not always. Artificial intelligence can serve as a tool to create even greater
products, like Streamlit. Both LLMs and Streamlit can work together

387

CHAPTER 13 STREAMLIT FOR Al

to enhance a good product and make it even better. In this chapter, we
learned an overview of LLMs and how they operate, along with the various
ways they can be interacted with. We then used one of these interaction
methods to build clones of a generic Al assistant that takes text input and
provides text output. The beauty of the product we built in this chapter lies
in its modularity. As a developer, you can experiment with, or even run in
parallel, different types of models from various API providers, or opt for a
self-hosted solution.

388

CHAPTER 14

Streamlit at Work

This final chapter presents two real-world cases demonstrating the use
of Streamlit. The first example highlights an analysis tool developed

by Iberdrola, a renewable energy company, for solar farms. This tool
evaluates the operational conditions of photovoltaic (PV) power plants,
enhancing the understanding of current PV plants and informing future
development decisions. The second case examines the use of Streamlit in
industrial environments with maxon Group, a producer of high-precision
electronic motors. Streamlit is used to create a command & control
dashboard application, enabling both local and remote management of
maxon motors in a surgical scope adapter system.

14.1. Streamlit in Clean Energy: /berdrola
« lberdrola

Iberdrola is a global electric utility company operating in over 30 countries.
Since its founding, the company has prioritized a clean and reliable
business model through renewable energy investments, establishing itself
as one of the largest renewable energy operators worldwide by installed
capacity. Sustainable generation is a key business unit for Iberdrola,
alongside networks and retail solutions [Ref: The Iberdrola Group is today
a global energy leader—Iberdrola].

© Mohammad Khorasani, Mohamed Abdou, Javier Hernandez Ferniandez 2025 389
M. Khorasani et al., Streamlit for Web Development,
https://doi.org/10.1007/979-8-8688-1826-4_14

https://doi.org/10.1007/979-8-8688-1826-4_14#DOI
https://www.iberdrola.com/about-us
https://www.iberdrola.com/about-us

CHAPTER 14 STREAMLIT AT WORK

The company generates electrical energy from clean sources such as
wind (onshore and offshore), hydro, photovoltaic, and others. Over the
next three years, Iberdrola plans to invest €41 billion in renewable energy
and other projects [Ref: Iberdrola Strategic Plan 2024-2026—Iberdrola]. Of
this, €15.5 billion will be allocated to renewables, with a target capacity of
60 GW. By 2030, the company expects its installed renewable capacity to
reach 95 GW [Ref: Renewable Energies—Iberdrola]. To get a glimpse of the
numbers associated with one solar plant, please see Figure 14-1.

Operating plant

Francisco Pizarro Photovoltanic
Plant

Location

8o

Caceres (Spain)

Total installed capacity
553 MW

AnEn

i
®

Investment
I= More than 300 million suros

oo CoOmissioning
£ 2022

AWETE W
"—-f
Ve

Figure 14-1. Francisco Pizarro Photovoltaic Plant [Ref: https://
www. iberdrola. com/about-us/what-we-do/solar-photovoltaic-
energy/francisco-pizarro-photovoltaic-plant].

14.1.1. Visualizing Operational Performance
of Solar Farms

Nuria Sanchez, Daniel Paredes, and Brenno Teixeira Martins from the
Energy Resource Department have spent years developing algorithms
and custom software to analyze Iberdrola’s solar and wind farms. The
specific use case highlighted here is a software tool designed to assess the

390

https://www.iberdrola.com/about-us/iberdrola-strategic-plan
https://www.iberdrola.com/about-us/our-company/renewable-energies
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant
https://www.iberdrola.com/about-us/what-we-do/solar-photovoltaic-energy/francisco-pizarro-photovoltaic-plant

CHAPTER 14 STREAMLIT AT WORK

performance of PV (Photovoltaic) farms and identify operational losses.
The program collects data from field devices, various databases, and
models to calculate the efficiency and losses of the power plants. This
information is then used to study the plants and their components, as well
as to detect deviations.

To meet the needs of operational performance analysis, an innovative
in-house software solution was developed. This software automates and
streamlines computations that would otherwise be performed manually.
Initially created as a series of Python scripts, the tool effectively met
the operational analysis requirements but was limited in scalability,
accessibility, and interaction with other systems. As a result, transitioning
to a cloud-based deployment would enhance its potential and enable
additional features and integration for end-users. Since all algorithms were
already implemented in Python, a web framework was needed to interface
with the web browser. Streamlit was chosen for this purpose due to its pure
Pythonic nature, which required minimal learning and eliminated the
need for HTML or CSS knowledge.

In collaboration with Iberdrola Innovation Middle East, a research
center focused on smart grids and the integration of distributed renewable
energy, the solar analysis tool was redesigned, and its functionality
enhanced. The following sections will discuss some of the Streamlit-based
graphical representations used by Iberdrola’s solar engineers.

14.1.2. Wind and Solar Production

Hybrid farms, which combine wind and solar energy production, are a
popular approach to maximizing renewable energy output. These farms
capitalize on the complementary nature of wind and solar resources, as
wind tends to be stronger at night and during the winter months, while
solar energy is abundant during the day and in summer. By integrating
both energy sources, hybrid farms can offer a more stable and continuous
power supply, reducing reliance on fossil fuels and enhancing grid stability.

391

CHAPTER 14 STREAMLIT AT WORK

Figure 14-2 presents the hourly production profile of a hybrid farm,
generated using synthetic data to highlight the dynamic interaction
between wind and solar energy throughout the day. The Y-axis represents
hourly production in megawatts (MW), while the X-axis shows the hours of
the day.

In the graph, wind energy production is depicted in blue, showing how
wind power fluctuates throughout the day, typically peaking during the night
and early morning hours. Photovoltaic (PV) production is shown in green,
illustrating the increase in solar energy generation as the sun climbs higher
in the sky, reaching its peak at midday, and tapering off toward the evening.

PV loss, represented in red, indicates the amount of potential solar
energy that is not captured due to the Point of Interconnection (POI) limit.
The yellow curve represents the percentage of PV loss, providing a clear
visual of how these losses correlate with levels of PV production. Notably,
the PV loss percentage tends to increase with higher PV production,
mainly due to the POI limit, which restricts the amount of energy that can
be fed into the grid.

This detailed visualization effectively demonstrates the
complementary nature of wind and solar energy in a hybrid farm setup,
highlighting how these renewable sources can work together to provide a
more stable and continuous power supply throughout the day.

392

CHAPTER 14 STREAMLIT AT WORK

(@@ Iberdrola

Hybrid Plants Energy
Assessment 1.0

— IIIIIII'IIII||||I|IIIIII

Figure 14-2. Hourly profile of a hybrid farm production

¢

14.1.3. Heat Maps

A heat map (or heatmap) is a visual tool that uses colors to represent

data values, making it easier to identify patterns and trends. The heat

map in Figure 14-3 shows the percentage of PV loss and the probability

of exceeding the POI limit for simulated hybrid farm production,

broken down by month and hour. In this heat map, red cells indicate a
higher percentage of PV losses and a greater probability of exceeding

the POI limit, while blue cells represent periods of no production. This
visualization provides engineers with a comprehensive overview of energy
loss patterns, which is crucial for optimizing the sizing and dimensioning
of renewable energy systems.

Moreover, this data is invaluable for integrating battery storage into
hybrid farms. For instance, the heat map shows that February and March
experience higher PV losses. Additionally, the probability of exceeding
the POI limit is generally higher between 10 AM and 3 PM from February

393

CHAPTER 14 STREAMLIT AT WORK

to July. These insights can guide the strategic placement and capacity
planning of battery storage systems, helping mitigate energy losses and
enhance overall efficiency. By understanding these patterns, engineers
can make informed decisions about the mix of renewable energy sources
and the implementation of storage solutions, ultimately enhancing the
performance and reliability of hybrid farms.

(@ Iberdrola '—‘h- JL- il

Hybrid Plants Energy
Assessment 1.0

Figure 14-3. Heatmap of the PV loss percentage for hybrid farm
production on a monthly and hourly basis

14.1.4. Closing Remarks

Beyond its visualization capabilities, Streamlit has shown remarkable
versatility for Iberdrola Renewables. One of its key advantages is the ability
to render multiple datasets on demand. Users can easily select the data
they wish to display through an interactive interface, eliminating the need
for manual programming in the source code. This feature greatly enhances
user experience and efficiency.

Another valuable aspect of Streamlit is its support for two-way
communication with charts using pure Python. This functionality enables
dynamic and interactive data visualizations, allowing users to engage

394

CHAPTER 14 STREAMLIT AT WORK

with the data more effectively. Additionally, Streamlit offers the ability to
render charts as HTML on a website. This means the charts can be made
interactive and integrated with other widgets, providing a seamless user
experience. This is a significant improvement over running the application
locally without third-party interactions, as it offers greater flexibility and
interactivity in data presentation. Overall, Streamlit’s features make it an
indispensable tool for Iberdrola Renewables, facilitating advanced data
visualization, user interaction, and integration with web-based platforms.

This publication is supported by Iberdrola S.A. as part of its
innovation department research studies. Its contents are solely
the responsibility of the authors and do not necessarily repre-
sent the official views of Iberdrola Group.

14.2. Streamlit in Industry: maxon Group
maxon

maxon Group, a Swiss company, manufactures and distributes industrial-
scale electronic motors for high-precision and advanced applications.
Their products are widely used in various industries, including healthcare,
aerospace, automotive, and packaging. The combination of versatile
products, exceptional build quality, and excellent customer service allows
developers to meet and exceed stringent performance requirements, both
on Earth and in space. maxon’s product range includes brushed, brushless,
AC, and DC motors, along with gearboxes, encoders, hall effect sensors,
and motor controllers that can be operated via RS232, USB, CANopen, and
EtherCAT communication protocols. Additionally, maxon offers extensive
customization options, enabling precise adjustments to dimensions,
mechanical interfaces, cables, bearings, and other drive features to meet
specific needs. Please see Figures 14-4 and 14-5 for examples of a brushless
motor and motor controller developed by maxon.

395

CHAPTER 14 STREAMLIT AT WORK

Figure 14-4. Disposition of a maxon GPX Speed 13 reduction
gearbox, ECX Speed 13M brushless motor, and ENX13 encoder

Figure 14-5. maxon EPOS4 Compact 24/1.5 CAN motor controller

396

CHAPTER 14 STREAMLIT AT WORK

14.2.1. Developing a Novel Surgical Scope
Adapter System for Minimally
Invasive Laparoscopy

Laparoscopy, a form of minimally invasive surgery, is increasingly
becoming the preferred method for abdominal procedures. This technique
involves making small incisions, leading to quicker recovery times and a
lower risk of complications for patients. Currently, these procedures are
performed manually, with a surgical assistant responsible for holding

and maneuvering the endoscope inserted into the abdomen to provide
real-time visuals of the surgical area Figure 14-6. This setup requires

the operator to have excellent dexterity and hand-eye coordination, as
even slight inaccuracies can lead to errors during surgery. [Ref: https://
onlinelibrary.wiley.com/doi/10.1002/rcs.2475]

==

Refract

<o,

Insert

it UP -2 a Pan Left
. i
Pan nght :.' qTllt Down
e I o

<& Rotate
v

Figure 14-6. Schematic of an endoscope inserted into the abdomen

397

https://onlinelibrary.wiley.com/doi/10.1002/rcs.2475
https://onlinelibrary.wiley.com/doi/10.1002/rcs.2475

CHAPTER 14 STREAMLIT AT WORK

To address the limitations of having a human operator in the feedback
loop, Dr. Nikhil Navkar and Mohammad Khorasani developed and
prototyped an innovative scope adapter (illustrated in Figures 14-7 and
14-9). In this design, the endoscope and its camera head are mounted and
controlled by a UR5 robotic arm, which provides six degrees of freedom.
Additionally, the adapter itself offers two more degrees of freedom,
allowing for the rotation of the scope and camera head around its axis and
the angulation of the scope tip.

The rotation mechanism is driven by a maxon ECX brushless motor,
while the angulation is powered by a maxon brushed DCX motor. Each
motor is paired with a reduction gearbox, achieving top speeds of 20 RPM
for rotation and 16 RPM for angulation. Furthermore, a three-channel
optical encoder is used, providing resolutions of 4,096 steps per revolution
for rotation and 2,048 steps per revolution for angulation.

Additional benefits of the surgical scope adapter include the following:

o Compatible with various endoscopes, camera heads,
and robotic arms.

e Operable through multiple input methods, such
as a joystick or by tracking optical markers on the
surgeon’s head.

e Programmable to minimize human error and prevent

unintended movements.

e Alleviates operator strain and fatigue by eliminating the
need to manually hold the scope.

398

CHAPTER 14 STREAMLIT AT WORK

| < =) Interface for URS
g : robotic arm

i T = Endoscope
maxon motor housing

Camera head

Rotatable inner cylinder

L — Camera head adapter

T Camera tip

Figure 14-7. Engineering drawing of the maxon-powered surgical
scope adapter

14.2.2. Streamlit Command and Control
Dashbhoard

After completing the mechanical prototype of the surgical scope adapter,
a Streamlit application was developed to display a real-time dashboard
showing the speed and position of the rotation and angulation motors
(as illustrated in Figure 14-8). This application was also integrated with
a three-axis joystick, allowing for precise control of each maxon motor
(as shown in Figure 14-9). Additionally, by port forwarding the Streamlit
application, remote control of the motors over the Internet became
possible. This feature is particularly valuable for tele-surgery, enabling
an operator to participate in a surgery without being physically present
at the hospital. However, it is important to note that remote control

over long distances can introduce latency, which may affect the device’s
performance.

399

CHAPTER 14 STREAMLIT AT WORK

Surgical Scope Adapter

Command & Control -
/251 \ 162 "\
f v-13 V-18
St motor - = @ =

(_' 16 % rﬁa
v-2 ¥-1

Figure 14-8. Streamlit command & control dashboard for the
surgical scope adapter

Figure 14-9. Prototype of the surgical scope adapter with the
Streamlit command & control dashboard

400

CHAPTER 14 STREAMLIT AT WORK

14.2.3. Closing Remarks

While Streamlit is branded as a framework for machine learning and data
science applications, it offers enough versatility to be used for various
purposes. As demonstrated in this case, Streamlit was effectively used

to integrate several non-trivial subsystems into one contiguous system.
Specifically, Streamlit was used to interface the maxon motors with a
joystick, enable remote control over both the local area network and

the Internet, and provide a real-time dashboard displaying the motors’
position and speed, all in just a few lines of code.

This work was supported by National Priority Research
Program (NPRP) award (NPRP13S-0116-200084) from the
Qatar National Research Fund (a member of The Qatar
Foundation) and IRGC-04-JI-17-138 award from Medical
Research Center (MRC) at Hamad Medical Corporation
(HMC). All opinions, findings, conclusions or recommenda-
tions expressed in this work are those of the authors and do
not necessarily reflect the views of our sponsors.

14.3. Summary

In this final chapter, we have explored two real-world instances of Streamlit
being effectively utilized for commercial and industrial activities. The

first case demonstrates how Iberdrola, a renewable energy firm, is using
Streamlit to create a corporate data management application for their wind
farms to estimate electrical losses during production. The second case
expands on an industrial use case, where high-precision electronic motors
manufactured by maxon Group are controlled via a Streamlit application
for use within a surgical scope adapter system. Both examples highlight
the utility that Streamlit offers to the corporate world and beyond.

401

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Acronyms
	Intended Audience
	Additional Material
	Chapter 1: Introducing Streamlit
	1.1. Why Streamlit?
	1.1.1. Local vs. the Cloud
	1.1.2. A Trend Toward Cloud Computing
	1.1.3. History of Web Frameworks in Python
	1.1.4. Flask
	1.1.5. Django
	1.1.6. Dash
	1.1.7. Web2Py
	1.1.8. The Need for a Pure Python Web Framework
	1.1.9. Academic Significance

	1.2. Firing It Up
	1.2.1. Technical Recommendations
	1.2.2. Environment Installation with Anaconda
	Programmatic Installation
	Graphical Installation

	1.2.3. Downloading and Installing Streamlit
	Direct pip Installation
	Manual Wheel File Installation
	Importing Streamlit

	1.2.4. Streamlit Console Commands
	Configuring Streamlit Through the Console

	1.2.5. Running Demo Apps
	1.2.6. Writing and Testing Code with PyCharm

	1.3. How Streamlit Works
	1.3.1. The Streamlit Architecture
	1.3.2. ReactJS in Streamlit

	1.4. Summary

	Chapter 2: Streamlit Basics
	2.1. Creating a Basic Application
	2.1.1. Generating User Input Forms
	2.1.2. Introducing Conditional Flow
	Example 1
	Example 2

	2.1.3. Managing and Debugging Errors
	Example 1
	Example 2

	2.2. Mutating Dataframes
	2.2.1. Filter
	2.2.2. Select
	2.2.3. Arrange
	2.2.4. Mutate
	2.2.5. Group By
	2.2.6. Merge
	2.2.7. Data Editor

	2.3. Rendering Static and Interactive Charts
	2.3.1. Static Bar Chart
	2.3.2. Static Line Chart
	2.3.3. Interactive Line Chart
	2.3.4. Interactive Map

	2.4. Developing the User Interface
	2.5. Summary

	Chapter 3: Developing the User Interface
	3.1. Designing the Application
	3.1.1. Configuring the Page
	Basic Page Configuration
	Removing Footer and Hamburger Menu
	Adding a Customized Footer
	Advanced Page Configuration

	3.1.2. Developing Themes and Color Schemes
	Customizing the Theme Graphically
	Customizing the Theme Programmatically
	Using Themes with Custom Components

	3.1.3. Organizing the Page
	Sidebar
	Expanders
	Columns
	Containers
	Popovers
	Dialog Boxes

	Placeholders
	Tabs

	3.2. Displaying Dynamic Content
	3.2.1. Creating a Real-Time Progress Bar

	3.3. Implementing Multipage Applications
	3.3.1. Creating Pages
	3.3.2. Grouping Subpages
	3.3.3. Enabling Sub URL Paths

	3.4. Modularizing Application Development
	3.4.1. Example: Developing a Social Network Application
	3.4.2. Fragmenting Parts of the Application
	3.4.3. Best Practices for Folder Structuring

	3.5. Summary

	Chapter 4: Managing and Visualizing Data
	4.1. Data Management
	4.1.1. Processing Bytes Data
	Text
	Multimedia
	Dataframes

	4.1.2. Caching Big Data
	4.1.3. Mutating Data in Real Time
	Native Data Mutation

	4.1.4. Advanced and Interactive Data Mutation

	4.2. Exploring Plotly Data Visualizations
	4.2.1. Rendering Plotly in Streamlit
	4.2.2. Basic Charts
	Line Chart
	Scatter Chart
	Bar Chart
	Pie Chart
	Chart Layout

	4.2.3. Statistical Charts
	Histogram
	Box Plot

	4.2.4. Time-Series Charts
	4.2.5. Geospatial Charts
	4.2.6. Animated Visualizations
	Animated Bubble Map
	Animated Bar Chart

	4.3. Summary

	Chapter 5: Integrating Databases
	5.1. Relational Databases
	5.1.1. Introduction to SQL
	5.1.2. Connecting a PostgreSQL Database to Streamlit
	5.1.3. Displaying Tables in Streamlit

	5.2. Nonrelational Databases
	5.2.1. Introduction to MongoDB
	5.2.2. Provisioning a Cloud Database
	5.2.3. Full-Text Indexing
	5.2.4. Querying the Database
	5.2.5. Displaying Tables in Streamlit

	5.3. Summary

	Chapter 6: Leveraging Backend Servers
	6.1. The Need for Backend Servers
	6.2. Frontend–Backend Communication
	6.2.1. HTTP Methods

	6.3. Working with JSON Files
	6.4. Provisioning a Backend Server
	6.4.1. API Building
	6.4.2. API Testing

	6.5. Multithreading and Multiprocessing Requests
	6.6. Connecting Streamlit to a Backend Server
	6.7. Summary

	Chapter 7: Implementing Session State
	7.1. Implementing Session State Natively
	7.1.1. Building an Application with Session State

	7.2. Introducing Session IDs
	7.3. User Insights
	7.3.1. Visualizing User Insights

	7.4. Cookie Management
	7.5. Summary

	Chapter 8: Authenticating Users and Securing Applications
	8.1. Developing User Accounts
	8.1.1. Hashing
	8.1.2. Salting

	8.2. Verifying User Credentials
	8.3. Secrets Management
	8.4. Anti-SQL Injection Measures with SQLAlchemy
	8.5. Configuring Gitignore Variables
	8.6. Summary

	Chapter 9: Deploying Locally and to the Cloud
	9.1. Exposing Streamlit to the World Wide Web
	9.1.1. Port Forwarding over a Network Gateway
	9.1.2. HTTP Tunneling Using NGROK

	9.2. Deployment to Streamlit Community Cloud
	9.2.1. One-Click Deployment
	9.2.2. Streamlit Secrets

	9.3. Deployment to Linux
	9.3.1. Native Deployment on a Linux Machine
	9.3.2. Deployment with Linux Docker Containers

	9.4. Deployment to Windows Server
	9.4.1. Establishing a Remote Desktop Connection
	9.4.2. Opening TCP/IP Ports
	9.4.3. Anaconda Offline Package Installation
	9.4.4. Adding Anaconda to System Path
	9.4.5. Running Application As an Executable Batch File
	9.4.6. Running Application As a Persistent Windows Service

	9.5. Summary

	Chapter 10: Building Streamlit Components
	10.1. Introduction to Streamlit Custom Components
	10.2. Using ReactJS to Create Streamlit Custom Components
	10.2.1. Making a ReactJS Component
	10.2.2. Using a ReactJS Component in Streamlit
	10.2.3. Sending Data to the Custom Component
	10.2.4. Receiving Data from the Custom Component

	10.3. Publishing Components As Pip Packages
	10.4. Component in Focus: Extra-Streamlit-Components
	10.4.1. Stepper Bar
	10.4.2. Bouncing Image
	10.4.3. Tab Bar
	10.4.4. Cookie Manager

	10.5. Summary

	Chapter 11: Streamlit Use Cases
	11.1. Dashboards and Real-Time Applications
	11.1.1. Temperature Data Recorder Application
	11.1.2. Motor Command and Control Application

	11.2. Time-Series Applications
	11.2.1. Date-Time Filter Application
	11.2.2. Time-Series Heatmap Application
	11.2.3. Time Synchronization Application

	11.3. Data Management and Machine Learning Applications
	11.3.1. Data Warehouse Application
	11.3.2. Advanced Application Development: Machine Learning As a Service
	User Authentication Without a Backend Server
	Utilities Script
	Config Script
	Main Script
	Logistic Regression Classifier

	11.4. Summary

	Chapter 12: Testing in Streamlit
	12.1. Principles of Testing
	12.1.1. What Is Testing?
	12.1.2. Benefits of Testing
	12.1.3. Types of Testing

	12.2. Why Test in Streamlit?
	12.2.1. Behavioral and Logical Testing
	12.2.2. User Interface Testing

	12.3. Testing Streamlit Applications
	12.3.1. Setting Up Testing Environment
	12.3.2. Writing Tests

	12.4. Automated Testing with GitHub Actions
	12.4.1. Setting Up the Workflow
	12.4.2. Creating the Test Script

	12.5. Summary

	Chapter 13: Streamlit for AI
	13.1. What Are LLMs and How Are They Useful?
	13.1.1. Summarization
	13.1.2. Content Generation
	13.1.3. Retrieval Augmented Generation

	13.2. Different Ways to Interact with LLMs
	13.2.1. Official Web Pages
	13.2.2. Application Program Interfaces
	13.2.3. Self-Hosting and Deployment

	13.3. Integrating LLMs with Streamlit
	13.3.1. Building an Input User Interface
	13.3.2. Setting Up an HTTP Connection
	13.3.3. Creating the Stream Effect
	13.3.4. Building an LLM Application with Streamlit

	13.4. Summary

	Chapter 14: Streamlit at Work
	14.1. Streamlit in Clean Energy: Iberdrola
	14.1.1. Visualizing Operational Performance of Solar Farms
	14.1.2. Wind and Solar Production
	14.1.3. Heat Maps
	14.1.4. Closing Remarks

	14.2. Streamlit in Industry: maxon Group
	14.2.1. Developing a Novel Surgical Scope Adapter System for Minimally Invasive Laparoscopy
	14.2.2. Streamlit Command and Control Dashboard
	14.2.3. Closing Remarks

	14.3. Summary

